Effect of larval density and diet on the growth and survival of Perna perna mussels in recirculation system (RAS)

Autores/as

  • Mariane Silveira Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina. Rua Beco dos Coroas, 305, Barra da Lagoa. CEP 88.061-600, Florianópolis, Santa Catarina, Brasil.
  • Renata Gomes Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina. Rua Beco dos Coroas, 305, Barra da Lagoa. CEP 88.061-600, Florianópolis, Santa Catarina, Brasil.
  • Carlos Gomes Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina. Rua Beco dos Coroas, 305, Barra da Lagoa. CEP 88.061-600, Florianópolis, Santa Catarina, Brasil.
  • João Ferreira Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina. Rua Beco dos Coroas, 305, Barra da Lagoa. CEP 88.061-600, Florianópolis, Santa Catarina, Brasil.
  • Francisco Squella Centro de Estudos do Mar, Universidade Federal do Paraná. Av. Rio grande do Norte, s/n, Balneário Mirassol. CEP 83255-000, Pontal do Paraná, Paraná, Brasil
  • Claudio Manoel Rodrigues de Melo Laboratory of Marine Mollusks, Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, SC 88061-600, Brazil. https://orcid.org/0000-0002-0969-7022

DOI:

https://doi.org/10.33936/at.v5i2.5233

Palabras clave:

Mejillón marrón, sistemas cerrados, larvicultura, densidad de siembra, hatchery

Resumen

Este estudio evaluó el efecto de la densidad inicial de larvas y la concentración de microalgas en la dieta sobre el crecimiento y el número de larvas competentes (número de larvas vivas al final del experimento retenidas en un tamiz con un tamaño de malla de 210 µm) de Perna perna en un sistema de recirculación de agua (RAS). El experimento se llevó a cabo utilizando un diseño completamente al azar y un esquema factorial. El primer factor fue la concentración del alimento, que estuvo compuesto por una mezcla de Chaetoceros müelleri (CM) e Isochrysis galbana (ISO), en una proporción de 30:70, respectivamente, en tres niveles (bajo: entre 1,26 a 2,19, medio: entre 2,36 a 3,94 y alta: 5,03 a 7,29 x 104 células mL⁻¹). El segundo factor fue la densidad del cultivo larvario, también a tres niveles (20, 80 y 200 larvas mL⁻¹), con 3 repeticiones en cada tratamiento. Las larvas alimentadas con la dieta con bajas y altas concentraciones no alcanzaron la competencia (210 µm) en 16 días. Sin embargo, en el día 16, las larvas alimentadas con la concentración media (2,36 a 3,94 x 104 células mL⁻¹), alcanzaron en porcentaje promedio de larvas competentes 21,8% ± 7,45, 27,4% ± 9,91 y 0,80% ± 0,26 a las densidades 20, 80 y 200 larvas mL-1, respectivamente.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aarab L., Pérez-Camacho A., Viera-Toledo M. del P., de Viçose G.C., Fernández-Palacios H., Molina L. (2013). Embryonic development and influence of egg density on early veliger larvae and effects of dietary microalgae on growth of brown mussel Perna perna (L. 1758) larvae under laboratory conditions. Aquaculture International, 21(5), 1065–1076. https://doi.org/10.1007/s10499-012-9612-7

Beduschi P., de Melo C.M.R., Ferreira J.F. (2009). The influence of techniques of larvae rearing and seed collectors on the survival rate and recovery efficiency of the brown mussel Perna perna (L.) in laboratory. Brazilian Archives of Biology and Technology, 52(1), 145–152. https://doi.org/10.1590/S1516-89132009000100019

Belz C.E., Simone L.R.L., Silveira Júnior N., Baggio R.A., Gernet M. de V., Birckolz C.J. (2020). First record of the mediterranean mussel Mytilus galloprovincialis (Bivalvia, mytilidae) in Brazil. Papeis Avulsos de Zoologia, 60, 0–4. https://doi.org/10.11606/1807-0205/2020.60.07

Blancheton J.P., Attramadal K.J.K., Michaud L., d’Orbcastel E.R., Vadstein O. (2013). Insight into bacterial population in aquaculture systems and its implication. Aquacultural Engineering, 53, 30–39. https://doi.org/10.1016/j.aquaeng.2012.11.009

Cheng P., Zhou C., Chu R., Chang T., Xu J., Ruan R., Chen P., Yan X. (2020). Effect of microalgae diet and culture system on the rearing of bivalve mollusks: Nutritional properties and potential cost improvements. Algal Research, 51(September), 102076. https://doi.org/10.1016/j.algal.2020.102076

Domínguez L., Villalba A., Fuentes J. (2010). Effects of photoperiod and the duration of conditioning on gametogenesis and spawning of the mussel Mytilus galloprovincialis (Lamarck). Aquaculture Research, 41(11), e807–e818. https://doi.org/10.1111/j.1365-2109.2010.02601.x

EPAGRI. (2022). Produção de Moluscos. Síntese Informativa Da Maricultura. 05 october 2022. (https://app.powerbi.com/view?r=eyJrIjoiN2I1YzhiNzQtYzNiNS00MjVmLTg0N2UtNTM1YWJhYWFiODgyIiwidCI6ImExN2QwM2ZjLTRiYWMtNGI2OC1iZDY4LWUzOTYzYTJlYzRlNiJ9)

Ferreira J.F., Magalhães A.R.M. (2004). Cultivo de Mexilhões. In Poli C.R., Poli A.T,B., Andreatta E., Beltrame E. (Eds.), Aquicultura: Experiências Brasileiras (pp. 221–250). Multitarefa Editora.

Galley T.H., Batista F M., Braithwaite R., King J., Beaumont A.R. (2010). Optimisation of larval culture of the mussel Mytilus edulis (L.). Aquaculture International, 18(3), 315–325. https://doi.org/10.1007/s10499-009-9245-7

Gmelin J.F. (1791). Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Impensis Georg. Emanuel. Beer. https://doi.org/10.5962/bhl.title.545

Harbach H., Palm H.W. (2020). Fully controlled experimental recirculating aquaculture system (RAS) for experimental studies with mussels (Mytilus edulis-like), focusing on temperature and salinity regimes. AACL Bioflux, 13(5), 2694–2704.

Helm M.M., Bourne N., Lovatelli A. (2004). Hatchery culture of bivalves. A practical manual. FAO Fisheries Technial Paper 471, FAO, Rome.

Joaquim S., Matias D., Matias A.M., Leitão A., Soares F., Cabral M., Chícharo L., Gaspar M.B. (2016). The effect of density in larval rearing of the pullet carpet shell Venerupis corrugata (Gmelin, 1791) in a recirculating aquaculture system. Aquaculture Research, 47(4), 1055–1066. https://doi.org/10.1111/are.12561

Kamermans P., Blanco A., Joaquim S., Matias D., Magnesen T., Nicolas J.L., Petton B., Robert R. (2016). Recirculation nursery systems for bivalves. Aquaculture International, 24(3), 827–842. https://doi.org/10.1007/s10499-016-9990-3

King N., Janke A., Kaspar H., Foster S. (2005). An intensive low volume larval rearing system for the simultaneous production of many families of the Pacific oyster Crassostrea gigas. Larvi ’05-Fish, Shellfish Larviculture Symposium, l, 236–237.

Kubitza F. (2006). Sistemas de Recirculação : Sistemas fechados com tratamento e reuso da água. Panorama Da Aquicultura, 16, 15–22.

Lagos L., Herrera M., Sánchez-Lazo C., Martínez-Pita I. (2015). Effect of larval stocking density on growth, survival and whole body cortisol of the Mediterranean mussel Mytilus galloprovincialis (Lamarck, 1819) larvae reared under laboratory conditions. Aquaculture Research, 46(7), 1648–1656. https://doi.org/10.1111/are.12318

Lamarck J.P.B.M. (1819). Histoire naturelle des animaux sans vertèbres. Chez l’Auteur. http://www.biodiversitylibrary.org/bibliography/400146:http://www.biodiversitylibrary.org/item/89219http://www.biodiversitylibrary.org/pdf4/068500800089219

Laxmilatha P., Rao G.S., Patnaik P., Rao T.N., Rao M.P., Dash B. (2011). Potential for the hatchery production of spat of the green mussel Perna viridis Linnaeus (1758). Aquaculture, 312(1–4), 88–94. https://doi.org/10.1016/j.aquaculture.2010.12.031

Lazo C.S., Pita I.M. (2012). Effect of temperature on survival, growth and development of Mytilus galloprovincialis larvae. Aquaculture Research, 43(8), 1127–1133. https://doi.org/10.1111/j.1365-2109.2011.02916.x

Le D.V., Alfaro A.C., Ragg N.L.C., Hilton Z., Watts E., King N. (2017). Functional morphology and performance of New Zealand geoduck clam (Panopea zelandica) larvae reared in a flow-through system. Aquaculture, 468, 32–44. https://doi.org/10.1016/j.aquaculture.2016.09.047

Licet B., Arrieche D., Freites L., Lodeiros C. (2011). Influencia del ciclo reproductivo y de los parámetros ambientales sobre los sustratos energéticos en las gónadas del mejillón marrón Perna perna L. (1758), en el Mar Caribe (Nororiente de Venezuela). Zootecnia Tropical, 29(3), 323–335.

Linneaus C. von. (1758). Systema naturae per regna tria naturae. Impensis Direct. Laurentii Salvii,. https://doi.org/10.5962/bhl.title.542

Magnesen T., Bergh Ø., Christophersen G. (2006). Yields of great scallop, Pecten maximus, larvae in a commercial flow-through rearing system in Norway. Aquaculture International, 14(4), 377–394. https://doi.org/10.1007/s10499-005-9039-5

Magnesen T., Jacobsen A. (2012). Effect of water recirculation on seawater quality and production of scallop (Pecten maximus) larvae. Aquacultural Engineering, 47, 1–6. https://doi.org/10.1016/j.aquaeng.2011.12.005

Marshall R., Mckinley S., Pearce C.M. (2010). Effects of nutrition on larval growth and survival in bivalves. Reviews in Aquaculture, 2(1), 33–55. https://doi.org/10.1111/j.1753-5131.2010.01022.x

Masser M.P., Rakocy J., Losordo T.M. (1992). Recirculating Aquaculture Tank Production Systems Management of Recirculating Systems. SRAC Publication, 103, 1–12.

Merino G., Uribe E., Soria G., Von Brand E. (2009). A comparison of larval production of the northern scallop, Argopecten purpuratus, in closed and recirculating culture systems. Aquacultural Engineering, 40(2), 95–103. https://doi.org/10.1016/j.aquaeng.2008.11.002

Mesquita E. de F.M., de Abreu M.G., de Lima F.C. (2001). Ciclo reprodutivo do mexilhão Perna perna (Linnaeus) (Molusca, Bivalvia) da Lagoa de Itaipu, Niterói, Rio de Janeiro, Brasil. Revista Brasileira de Zoologia, 18(2), 631–636. https://doi.org/10.1590/s0101-81752001000200029

Nicolas J.L., Corre S., Cochard J.C. (2004). Bacterial population association with phytoplankton cultured in a bivalve hatchery. Microbial Ecology, 48(3), 400–413. https://doi.org/10.1007/s00248-003-2031-6

Pascoe P.L., Parry H.E., Hawkins A.J.S. (2009). Observations on the measurement and interpretation of clearance rate variations in suspension-feeding bivalve shellfish. Aquatic Biology, 6(1–3), 181–190. https://doi.org/10.3354/ab00123

Pechenik J.A., Eyster L.S., Widdows J., Bayne B.L. (1990). The influence of food concentration and temperature on growth and morphological differentiation of blue mussel Mytilus edulis L. larvae. Journal of Experimental Marine Biology and Ecology, 136(1), 47–64. https://doi.org/10.1016/0022-0981(90)90099-X

Pettersen A.K., Turchini G.M., Jahangard S., Ingram B.A., Sherman C.D.H. (2010). Effects of different dietary microalgae on survival, growth, settlement and fatty acid composition of blue mussel (Mytilus galloprovincialis) larvae. Aquaculture, 309(1–4), 115–124. https://doi.org/10.1016/j.aquaculture.2010.09.024

Pfeiffer T.J., Rusch K.A. (2000). An integrated system for microalgal and nursery seed clam culture. Aquacultural Engineering, 24(1), 15–31. https://doi.org/10.1016/S0144-8609(00)00063-7

Quoy J.R.T., Gaimard P. (1835). Voyage de la corvette l’Astrolabe : exécuté par ordre du roi, pendant les années 1826-1827-1828-1829 / sous le commandement de J. Dumont d’Urville. (3rd ed.). J. Tastu,. https://doi.org/10.5962/bhl.title.2132

Ragg N.L.C., King N., Watts E., Morrish J. (2010). Optimising the delivery of the key dietary diatom Chaetoceros calcitrans to intensively cultured GreenshellTM mussel larvae, Perna canaliculus. Aquaculture, 306(1–4), 270–280. https://doi.org/10.1016/j.aquaculture.2010.05.010

Ramos C. de O., da Silva F.C., Gomes C.H.A. de M., Langdon C., Takano P., Gray M.W., De Melo C.M.R. (2021). Effect of larval density on growth and survival of the Pacific oyster Crassostrea gigas in a recirculation aquaculture system. Aquaculture, 540, 736667. https://doi.org/10.1016/j.aquaculture.2021.736667

Ramos C. de O., da Silva F.C., Gray M., Gomes C.H.A. de M., De Melo C.M.R. (2022). Effect of water recirculation rate and initial stocking densities on competent larvae and survival of the Pacific oyster Crassostrea gigas in a recirculation aquaculture system. Aquaculture International, 0123456789. https://doi.org/10.1007/s10499-022-00896-6

Reiner S.L. (2011). Evaluating the use of flow ­ through larval culture for the Eastern oyster , Crassostrea virginica [College of William and Mary in Virginia]. Master´s Thesis. https://doi.org/10.25773/v5-2s4b-k150

Rico-Villa B., Pouvreau S., Robert R. (2009). Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture, 287(3–4), 395–401. https://doi.org/10.1016/j.aquaculture.2008.10.054

Rico-Villa B., Woerther P., Mingant C., Lepiver D., Pouvreau S., Hamon M., Robert R. (2008). A flow-through rearing system for ecophysiological studies of Pacific oyster Crassostrea gigas larvae. Aquaculture, 282(1–4), 54–60. https://doi.org/10.1016/j.aquaculture.2008.06.016

Sprung M. (1984). Physiological energetics of mussel larvae (Mytilus edulis). I. Shell growth and biomass. Marine Ecology Progress Series, 17, 283–293. https://doi.org/10.3354/meps017283

Stakowian N., Guilherme P.D.B., Ferreira A.M., Bueno M.L., Tavares Y.A.G. (2020). Reproductive investment of Perna perna (Mytilida: Mytilidae) in subtropical regions: combining several methods. Pan-American Journal of Aquatic Sciences, 15(3), 178–194.

Statistical Analysis System (SAS). (2003). SAS: Statistical analysis system-getting started with the sas learning edition. SAS Institute.

Suplicy F.M. (2008). Legal aspects and governmental actions for the development of mollusc farming in Brazil. In A. Lovatelli, A. Farias, , I. Uriarte (Eds.), Estado actual del cultivo y manejo de moluscos bivalvos y su proyección futura: factores que afectan su sustentabilidad en América Latina (pp. 205–208). Taller Técnico Regional de la FAO.

Suplicy F.M. (2017). Cultivo de Mexilhões. EPAGRI.

Thunberg C.P. (1793). Tekning och Beskrifning på en stor Ostronsort ifrån Japan. Kongliga Svenska Vetenskaps-Akademiens Handlingar, 14((4-6)), 140–142.

Tureck C.R., Melo C.M.R. de, Gomes C.H.A. de M., Lazoski C., Marenzi A.W.C., Ferreira J.P.R., Ferreira J.F. (2020). Use of artificial collectors to obtain oyster seeds in Babitonga Bay, Santa Catarina, Brazil. Boletim Do Instituto de Pesca, 46(1), in press.

Turini C.S., Sühnel S., Lagreze-Squella F.J., Ferreira J.F., de Melo C.M.R. (2014). Efeitos da densidade de estocagem em sistema contínuo na sobrevivência de larvas do mexilhão Perna perna. Acta Scientiarum - Animal Sciences, 36(3), 247–252. https://doi.org/10.4025/actascianimsci.v36i3.23685

Wacker A., Von Elert E. (2002). Strong influences of larval diet history on subsequent post-settlement growth in the freshwater mollusc Dreissena polymorpha. Proceedings of the Royal Society B: Biological Sciences, 269(1505), 2113–2119. https://doi.org/10.1098/rspb.2002.2139

Xiongfei W., Zhidong Z., Deshang L., Kangmei C., Zhuanshang T., Liegang S., Kaichong X., Bailin G. (2005). Closed recirculating system for shrimp-mollusk polyculture. Chinese Journal of Oceanology and Limnology, 23(4), 461–468. https://doi.org/10.1007/bf02842692

Zohar Y., Tal Y., Schreier H.J., Steven C.R., Stubblefield J., Place A.R. (2005). Commercially feasible urban recirculating Aquaculture: Addressing the marine sector. Urban Aquaculture, June, 150–171. https://doi.org/10.1079/9780851998299.0159

Descargas

Publicado

2023-05-30