Variaciones en el contenido de proteína, lípidos y ácidos grasos de la semilla de chía (Salvia hispanica L.) producida comercialmente en Ecuador

  • Ricardo Ayerza (h) The University of Arizona


Variations in the protein, lipid and fatty acid content of the commercial chia seed (Salvia hispánica L.) produced in Ecuador


El objetivo fue determinar las variaciones en los contenidos de proteína, lípidos y composición de ácidos grasos de las semillas de chía producidas comercialmente en seis sitios de los ecosistemas de los Valles Interandinos (Altos y Bajos), Selva Lluviosa Pluviestacional y Bosque Seco Tropical, del Ecuador. El contenido de proteína fue más alto (p<0,05) en las semillas de Bosque de Oro (24,78%) y El Azúcar (24,35%) que las de los otros cuatro sitios, y sin diferencias significativas (P<0,05) entre ellos. Las semillas de Bosque de Oro (34,90%) y San Pablo presentaron el más alto contenido de lípidos, aunque sin diferencias significativas (p<0,05) con las de Salinas (32,65%) y Patate (31.97%). Las semillas originadas en Salinas presentaron el mayor (p<0,05) contenido de α-linolénico (66,75%), seguido por las de Patate (63,93%), Guayllabamba (63,57%), Bosque de Oro (63,53%) y San Pablo (62,70%). El ácido graso α-linolénico presentó una alta relación negativa con los ácidos grasos palmítico (R2 = 0,797; p<0,001), linoleico (R2 = 0,862; p<0,001), y oleico (R2 = 0,767; p<0,001).

Palabras clave: aceite; ácidos grasos; chía; Ecuador; Salvia hispánica L.


The objective was to determine the variations in the protein content, lipids and fatty acids composition of the chia seeds commercially produced in six locations of the Inter-Andean Valley (Low and high), Rainforest and Tropical Dry Forest ecosystems of Ecuador. The protein content was higher (p< 0.05) in the seeds from Bosque de Oro (24.78%) and El Azúcar (24.35%) than those originated in the other four locations and without significant differences (p < 0.05) between them. The seeds of Bosque de Oro (34.90%) and San Pablo had the highest lipid content, although without significant differences (p<0.05) with those of Salinas (32.65%) and Patate (31.97%). The seeds originated in Salinas had the highest (p<0.05) content of α-linolenic (66.75%), followed by those of Patate (63.93%), Guayllabamba (63.57%), Bosque de Oro (63.53%) and San Pablo (62.70%). The α-linolenic fatty acid showed a high negative relationship with palmitic fatty acids (R2 = 0.797; p<0,001), linoleic (R2 = 0.862; p<0.001), and oleic (R2 = 0.767; p<0.001).

Keywords: chia; Ecuador; fatty acids; oil; Salvia hispanica L.





Associate in Arid Lands, The University of Arizona, Tucson, Arizona, USA.


AOAC-Association of Official Analytical Chemists. (1995). Micro-Kjeldahl Method. Official methods of analysis (960.52). AOAC, Gaithersberg, EE.UU.
Ayerza, R. (h). (1995). Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in Argentina. Journal of the American Oil Chemists’ Society 72: 1079–1081.
Ayerza, R. (h). (2001). Wax-ester composition of ten jojoba clones growing in two arid ecosystems of South America. Tropical Science 41: 168–171.
Ayerza, R. (h). (2011). The seed's oil content and fatty acid composition of chia (Salvia hispanica L.) variety Iztac 1, grown under six tropical ecosystems conditions. Interciencia 36(8):620-624.
Ayerza, R. (h). (2013). Effect of seed color on protein, oil, fiber, amino acids, and antioxidants content and composition of two chia (Salvia hispanica L.) genotypes. Emirates Journal of Food and Agriculture 25(7): 495-500.
Ayerza, R. (h). (2019a). Treinta años con la Chía: historia, composición, beneficios y producción, de un alimento nutracéutico. Editorial A Ojo, La Rinconada, Santa Elena, Ecuador (En prensa).
Ayerza, R. (h). (2019b). Moringa, ¿utopía o realidad?. Utilización, composición y producción de un árbol destacado en la tradición Ayurvédica de la India. Editorial A Ojo, La Rinconada, Santa Elena, Ecuador, 162 p.
Ayerza, R. (h) & Coates, W. (2004). Protein and oil content, peroxide index and fatty acid composition of chia (Salvia hispanica L.) grown in six tropical and subtropical ecosystems of South America. Tropical Science 44(3): 131-135.
Ayerza, R. (h) & Coates, W. (2008). Seed yield, oil content and fatty acid composition of three botanical sources of ω-3 fatty acid planted in The Yungas ecosystem of Tropical Argentina. Tropical Science 47(4): 183-187.
Ayerza, R. (h) & Coates, W. (2009a). Influence of environment and genotype on crop cycle and yield; seed protein, oil, and α-linolenic ꞷ-3-fatty acid content of chia (Salvia hispanica L.). Industrial Crops and Products 30(2): 321-324.
Ayerza, R. (h) & Coates, W. (2009b). Some quality components of four chia (Salvia hispánica L.) genotypes under Tropical Costal Desert ecosystem conditions. Asian Journal of Plant Science 8(4): 301-307.
Cahill, J. P. (2004). Genetic diversity among varieties of chia (Salvia hispanica L.). Genetic Resources and Crop Evolution 51: 773–781.
Cai, Z. Q., Jiao, D. Y., Tang, S. X., Dao, X. S., Lei, Y. B. & Cai, C. T. (2012). Leaf photosynthesis, growth, and seed chemicals of Sacha Inchi plants cultivated along an altitude gradient. Crop Science 52: 1859-1867.
Canadian Food Inspection. (2008). Seed Program Specific Work Instruction: Official Seed Sampling. SWI 132.1.1, Plant Production Division, Plant Products Directorate, Government of Canada, Ottawa, Ontario, Canada.
Carver, B. F, Burton, J. W., Carter, T. E. & Wilson, R. F. (1986). Response to environmental variation of soybean lines selected for altered unsaturated fatty acid composition. Crop Science 26: 1176-1180.
Cohort Stat 6.311. 2006. Cohort Software Inc., Monterey, USA.
Dierig, D. A., Adam, N. R., Mackey, B. E., Dahlquist, G. H. & Coffelt T. A. (2006). Temperature and elevation effects on plant growth, development, and seed production of two Lesquerella species. Industrial Crops and Products 24: 17-25.
Fernadez, I., Feliu, M. S, Vidueiros, S. M., Ayerza, R. (h), Coates, W., Slobodianik, N. H. & Pallaro, A. N. (2006). Mejoramiento de la calidad proteica del trigo utilizando una fuente no tradicional. XIV Congreso Latino-Americano de Nutriçâo, Florianópolis, Brasil, Poster NE 0132.
Folch, J., Lees M. & Sloane-Stanley, G. H. A. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemist 226: 497-507.
Garba, L., Mohamad-Ali, M. S., Oslan, S. N. & Rahman, R. N. (2017). Review on fatty acid desaturases and their roles in temperature acclimatisation. Journal of Applied Science 17: 282-295.
Harwood, J. L. (2019). Plant Fatty Acid Synthesis. AOCS Lipid Library. Recuperado de
Hatfield, J. L. & Prueger, N. J. H. (2015). Temperature extremes: Effect on plant growth and development Weather and Climate Extremes 10: 4-10.
IRAM-Instituto Argentino de Racionalización de Materiales. 1982. Aceites y grasas vegetales y animales: Método rápido de preparación de esteres metílicos de ácidos grasos para su análisis por cromatografía en fase gaseosa. Instituto Argentino de Racionalización de Materiales, Buenos Aires, Argentina.
ISO-Internacional Standard ISO 5509. (1978). Animal and vegetable fats and oils–Preparation of methyl esters of fatty acids. International Organization for Standardization, Geneva, Switzerland.
Ministry of Foreign Affairs. (2017). Exporting chia seeds to Europe. Centre for the Promotion of Imports from developing countries, Netherlands Ministry of Foreign Affairs. Recuperado de file:///C:/Users/Ricardo/AppData/Local/Microsoft/Windows/INetCache/IE/XRW3RDPY/CBI%20-%20Centre%20for%20the%20Promotion%20of%20Imports%20from%20developing%20countries%20-%20Exporting%20chia%20seeds%20to%20Europe%20-%202018-08-09.pdf
Mohammed, C. A., Francis, J. F., Rajewski, J. & Maranville, J. W. (1987). Genotype H environment interaction and stability analysis of protein and oil in grain sorghum. Crop Science 27: 169-171.
Sierra, L., Roco, J., Alarcón, G., Medina, M, Van Nieuwenhove, C., Peral de Bruno, M. & Jerez, S. (2015). Dietary intervention with Salvia hispanica (Chia) oil improves vascular function in rabbits under hypercholesterolaemic conditions. Journal of Functional Foods 14: 641-649.
Simopoulos, A. P. (2002). Genetic variation and dietary response: Nutrigenetics/nutrigenomics. Asia Pacific Journal of Clinical Nutrition 1(S6): S117-S128.
Simopoulos, A. P. (2008). The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pacific Journal of Clinical Nutrition 17(S1): 131-134.
Vollmann J. J., Fritz, C. N., Grausgruber, H. & Ruckenbauer, P. (2000). Spatial field variations in soybean (Glycine max [L.] Merr.) performance trials affect agronomic characters and seed composition. European Journal of Agronomy 12: 13–22.
Vuksan, V., Whitham, D., Sievenpiper, J. L., Jenkins, A. L., Rogovik, A. L., Bazinet, R. P., Vidgen, E. & Hanna, A. (2007). Supplementation of conventional therapy with the novel grain Salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes: results of a randomized controlled trial. Diabetes Care 30(11): 2804-2810.
Xue, Y., Chen, B., Win, A. N., Fu, C., Lian, J., Liu, X., Wang, R., Zhang, X. & Chai, Y. 2018. Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: cloning, characterization and expression. PLoS 13(1). Recuperado de
Agricultura y Silvicultura