Viabilidad para hacer un dispositivo de destrucción selectiva de manera remota de tejidos orgánicos

Viability to make a selective destruction device on organic tissues remotely

Autores/as

  • Antonio Javier Moreno Castro

DOI:

https://doi.org/10.33936/la_tecnica.v0i11.563

Palabras clave:

Ablación por hipertermia, anisotropía de nanoparticulas, diamagnetismo, campos magnéticos caóticos, imagen por resonancia magnética nuclear

Resumen

En  este  artículo  se  explica  la  viabilidad  para  crear  un  dispositivo  capaz  de  controlar  la  absorbancia   a las radiaciones electromagnéticas de los tejidos orgánicos a través de la anisotropía óptica de ciertas nanoparticulas/biomoléculas que lo constituyan,  para una destrucción  de manera  remota  de tejidos  (Device of selectivetissuesdestroy -DSTD).  Esto se hará mediante  el control de la entropía  topológica  de las líneas de campo magnético  (MFL),  en un espacio  confinado, a través de un control  parcial  de los campos  magnéticos caóticos (CMF). Esto junto con la capacidad  de orientación  de ciertas nanoparticulas, nos permitirá crear un control en la absorbancia de las frecuencias ópticas. Para que finalmente estos mecanismos  nos proporcionen las  herramientas  para  la mejora  de  varias  técnicas  actualmente  en  práctica  de  ablación  por  hipertermia, biomarcadores, dosificación de fármacos y otras. 

Palabras claves: Ablación por hipertermia, anisotropía de nanoparticulas, diamagnetismo, campos magnéticos caóticos, imagen por resonancia magnética nuclear (IRM).

Descargas

La descarga de datos todavía no está disponible.

Citas

[1] Aguirre J., D.Peralta-Salas, 2007. “Realistic examples of chaotic magnetic fields created by wires” Europhys. Lett. 80, 60007.

[2] Aguirre J., Giné J., and D.Peralta-Salas, 2008. “Integrability of magnetic fields created by current distributions” Nonlinearity 21, 51.

[3] Hosoda M., Miyaguchi T., Imagawa K., K. Nakamura, 2009. “Ubiquity of chaotic magnetic-field lines generated by three-dimensionally crossed wires in modern electric circuits,” Phys Rev E Stat Nonlin Soft Matter Phys.

[4] Hosoda M., Miyaguchi T., 2011. “Topology of magnetic field lines: Chaos and bifurcations emerging from two- action systems”, Physical review e 83,.

[5] Diacu F., Holmes P., 1996. Celestial Encounters: The Origins of Chaos and Stability, Princeton University Press, Princeton, NJ,.

[6] Ott E., 2002. Chaos in Dynamical Systems, Cambridge University Press, Cambridge.

[7] Arnold V.I., Kozlov V.V., Neishtadt A., 2006. Mathematical Aspects of Classical and Celestial Mechanics, Dynamical Systems III, 3rd edn. Series: Encyclopedia of Mathematical Sciences, vol 3. Springer, Berlin.

[8] Schöll E., Schuster H.G., 2008. Handbook of Chaos Control, 2nd EdWILEY-VCh.

[9] Sanjuán M. A. F., Grebogi C., 2010. Recent Progress in Controlling Chaos, ed. world scientific.

[10] Aguirre J., Luque A., Peralta-Salas D., 2010. “Motion of charged particles in magnetic fields created by symmetric congurations of wires”. Phys D, 239, 10.

[11] Luque A., Peralta-Salas D., 2013. “Motion of charged particles in ABC magnetic fields”, unpublished, dep Matemática Aplicada i Analisi Barcelona univ.

[12] Ram A. K., Dasgupta B., 2006. “Generation of chaotic magnetic fields and their effect on particle motion”, Eos Trans. AGU, 87(52) Fall Meet. Suppl., NG31B-1593.

[13] Ram, A. K. and B. Dasgupta, 2010. “Dynamics of charged particles in spatially chaotic magnetic fields”, Phys. Plasmas, 17, 122104.

[14] Graham Alan Webb, 2008. Modern Magnetic Resonance, Springer.

[15] Wartenberg M., Richter M., Datchev A., et at, 2010. “Glycolytic pyruvate regulates P-Glycoprotein expression in multicellular tumor spheroids via modulation of the intracellular redox state”. J Cell Biochem.vol 109, 434-46.

[16] Kunz-Schughart L.A., Kreutz M., Knuechel R., 1998. “Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology”. International Journal of Experimental Pathology, Vol 79, 1-23.

[17] Bjerkvig R., Tonnesen A., Laerum O.D., Backlund E.O. 1990. “Multicellular tumor spheroids from human gliomas maintained in organ culture”. J Neurosurg, vol 72, 463-75.

[18] Fjellbirkeland L., Bjerkvig R., Steinsvag S.K., Laerum O.D. 1996. “Non adhesive stationary organ culture of human bronchial mucosa”. Am J Respir Cell Mol Biol, 15, 197-206,

[19] Vatne V, Fjellbirkeland L, Litlekalsoey J, Hoestmark J. 1998. “Nonadheshive stationary organ culture of normal human urinary bladder mucosa”. Anticancer Res,vol 18, 3979-83,.

[20] Romero F.J., Roma J.” 1995. Glutathione and protein kinase C in peripheral nervous tissue”. Methods Enzymol, vol 252, 146-53.

[21] Reed D.J., Babson J.R., Beatty P.W., Brodie A. E., Ellis W.W., Potter D.W., 1980. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal Biochem, vol 106 55-62.

[22] Gimble J.M., Katz AJ, Bunnell B.A., 2007. “Adipose- derived stem cells for regenerative medicine”. Circ Res.;100(9):1249-60.

[23] Yuri Izyumov, 1991. Neutron diffraction of magnetic material. Consultants bureau.

[24] William I. F., 2002. Structure determination from powder diffraction data. Oxford University Press.

[25] Slawomir Tumanski, 2011. Handbook of Magnetic Measurements, CRC Press.

[26] Binhi V. N., 2002. Magnetobiology ,Academic Press, New York. [27] Muneeb Ahmed, Brace C.L., Lee Fred T. Jr., Nahum Goldberg S., 2011. “Principles of and Advances in Percutaneous Ablation”, Radiology: Volume 258: Number 2. [28] Caroline J. Simon, Damian E. Dupuy, William W. Mayo-Smith, 2005. “Microwave
blation:Principles and Applications”, RadioGraphics ;25:S69 –S83. [29] Laissue Jean A., Geiser Gabrielle, 1998.
“Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated x rays”, Int. J. Cancer:78,654–660 .

[30] Romanelli P., Fardone E,et al, 2013. “Synchrotron- Generated Microbeam Sensorimotor Cortex Transections Induce Seizure Control without Disruption of Neurological Functions”, Vol 8 , Issue 1, e53549.

[31] Rachel L. Manthe, Susan P. Foy, 2010. “Tumor Ablation and Nanotechnology” Mol Pharm. 6; 7(6): 1880–1898. doi:10.1021/mp1001944.

[32] P. M. Tomchuk and B. P. Tomchuk,” Optical absorption by small metallic particles”, Zh. Eksp. Teor. Fiz.112, 661–678, Aug 1997.

[33] A. Asenjo-Garcia, A. Manjavacas,et al, 2012. “Magnetic polarization in the optical absorption of metallic nanoparticles”, Optics express 28142, Vol. 20, No. 27.

[34] Shanghua Li, Meng Meng Lin, et al, 2010. “Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications” Nano Reviews 1:5214 - DOI: 10.3402/nano.v1i0.5214,

[35] Panikkanvalappil R. Sajanlal, Theruvakkattil S,et al, 2011. “Anisotropic nanomaterials: structure, growth, assembly, and functions”, Nano Reviews 2:5883 - DOI: 10.3402/nano.v2i0.5883,.

[36] Dev Kumar Chatterjee, Parmeswaran Diagaradjane, et al, 2011. “Nanoparticle-mediated hyperthermia in cancer therapy”, Ther Deliv 1; 2(8): 1001–1014.

[37] Alexander Chan, Rowan P. Orme, et al, 2013. “Remote and local control of stimuli responsive materials for therapeutic applications”, Advanced Drug Delivery Reviews 65 497–514.

[38] Ajay Kumar Gupta, Naregalkar Rohan R., et al, 2007. “Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications”, nanomedicine 2(1), 23-39.

[39] L. A. Dykman, N. G. Khlebtsov, 2011. “Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects”, ACTA NATURAE| VOL. 3 № 2 (9).

[40] C. Kramberger, H. Shiozawa, et al , 2007. “Anisotropy in the X-ray absorption of vertically aligned single wall carbon nanotubes”. phys. stat. sol. (b) 244, No. 11, 3978 – 3981.

[41] Fischer J. E., Zhoum W., et al, 2003. “Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties”, Journal of applied physics volume 93, number 4.

[42] Fernández López María B., 2009. “Ferritas naturales y sintéticas implicaciones nanobiomedicas”, Ph.D Tesis, dep. inorganic chemistry , Granada Univ.

[43] Jordan Andreas, Scholz Regina, 2001. “Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia”, journal of Magnetism and Magnetic Materials 225 () 118-126.

[44] Stefanescu, S., 1986. Open magnetic field lines. Rev. Roum. Phys.31, 701–721.

[45] Jacques Steven L., 2013. “Optical properties of biological tissues: a review”, Phys. Med. Biol.58. R37–R6.

Publicado

2013-12-02

Cómo citar

Moreno Castro, A. J. (2013). Viabilidad para hacer un dispositivo de destrucción selectiva de manera remota de tejidos orgánicos: Viability to make a selective destruction device on organic tissues remotely. La Técnica. Revista De Las Agrociencias. ISSN 2477-8982, (11), 42–49. https://doi.org/10.33936/la_tecnica.v0i11.563

Número

Sección

Artículos