Aplicación del NaHCO3 como estrategia fisicoquímica para mitigar el impacto ambiental de la vinaza producida en la destilación de alcohol artesanal

Autores/as

  • Ever Darío Morales Avendaño Escuela Politécnica Superior Agropecuaria de Manabí Manuel Félix López ESPAM MFL, Calceta, Ecuador. https://orcid.org/0000-0001-9006-4996
  • Jhonny Navarrete Álava Escuela Politécnica Superior Agropecuaria de Manabí Manuel Félix López ESPAM MFL, Calceta, Ecuador. https://orcid.org/0000-0002-5448-2506
  • Francesco Garzón Cedeño Escuela Politécnica Superior Agropecuaria de Manabí Manuel Félix López ESPAM MFL, Calceta, Ecuador. https://orcid.org/0009-0003-4290-8383
  • Marvin Zambrano Lara Escuela Politécnica Superior Agropecuaria de Manabí Manuel Félix López ESPAM MFL, Calceta, Ecuador. https://orcid.org/0009-0008-9754-2186

DOI:

https://doi.org/10.33936/latecnica.v13i2.6179

Palabras clave:

bioherbicida; biofertilizante; DBO5; DQO; licor; pH.

Resumen

La vinaza es un subproducto derivado de la destilación del fermentado del guarapo de caña de azúcar y caracterizado por elevados niveles de conductividad eléctrica (CE), demanda química de oxígeno (DQO), demanda biológica de oxígeno consumido a los 5 días (DBO5) y acidez; lo cual ocasiona un impacto ambiental en los sectores de producción. El objetivo del estudio consistió en determinar el efecto del HNaCO3 como tratamiento físico-químico para mitigar la actividad herbicida de la vinaza recolectada en una unidad productora artesanal de alcohol. Muestras de 10 L a pH 4,0 fueron distribuidas en envases y ajustadas a pH de 5, 6 y 7 con HNaCO3; luego analizadas en cuanto a la CE, DQO, DBO5, salinidad y temperatura. El experimento se realizó con 10 especies de plantas silvestres, mantenidas en envases de 6,5 y 3,5 L. Todas las unidades experimentales fueron dosificadas con vinaza a pH 4 (testigo), 5, 6 y 7, cada tres días, según su capacidad volumétrica (100 o 150 mL); durante 8 semanas. Los resultados reflejaron un descenso de la CE hasta un 98%, y una tendencia a la reducción de DQO con el incremento del pH. En cambio, el NaHCO3 no influyó en la DBO5; sin embargo, el porcentaje de remoción de la CE y DQO, produjo una reducción del efecto herbicida; mientras que en solo tres especies de plantas silvestres se observó manchas a nivel foliar, entre 5 y 30%. Se considera que el NaHCO3 promueve la reducción de la DQO, CE y neutraliza la acidez; lo cual sugiere la factibilidad de aplicación en suelos, contribuyendo así con la mitigación del impacto ambiental.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aguiar, S., Panimboza-Ojeda, A., Soto-Cabrera, A., Cuyanquillo-Barrionuevo, J., Pérez-Martínez, A., Diéguez-Santana, K. (2021). Propuesta para la producción más limpia en destilerías artesanales. Rev. U.D.C.A Act. & Div. Cient., 24(2), 1500. http://doi.org/ 10.31910/rudca.v24.n2.2021.1500

Aguirre-Mendoza, Z., Jaramillo-Díaz, N. y Quizhpe-Coronel, W. (2019). Arvenses asociadas a cultivos y pastizales del Ecuador. Universidad Nacional de Loja. Ecuador. 216 p.

Alfaro, J. (2021). Propuesta de tratamiento para el reúso de agua condensada resultante de la destilación de bioetanol. Agua, Saneamiento & Ambiente, 16(1), 25-34. https://revistas.usac.edu.gt/index.php/asa/article/view/1093

Alvarado Sánchez, S. y Romero Martínez, K. (2022). Recuperación de bicarbonato de sodio y reajuste de solución alcalina utilizada para medición del biogás por método de desplazamiento de líquidos. Tesis. 156 p. http://repositorio.ug.edu.ec/handle/ redug/65344

Arango Ruiz, A. (2012). Efectos del pH y la conductividad en la electrocoagulación de aguas residuales de la industria láctea. Producción + Limpia, 7(1), 59-67. file:///C:/Users/User%20Pc/Downloads/Dialnet-EfectosDelPHYLaConductividadEn LaElectrocoagulacion-4331975%20(3).pdf

Aristizábal Alzate, C., (2015). Caracterización físico-química de una vinaza resultante de la producción de alcohol de una industria licorera, a partir del aprovechamiento de la caña de azúcar. Ing. USBMed, 6 (2), 36-41.https://revistas.usb.edu.co/index.php/IngUSB med/article/view/1729

Bonaventura, D., Chacartegui, R., Valverde, J. M., Becerra, J. A., Ortiz, C. and Lizana, J. (2018). Dry carbonate process for CO2 capture and storage: Integration with solar thermal power. Renewable and Sustainable Energy Reviews, 82, 1796-1812.https://doi.org/10.1016/J.RSER.2017.06.061

Cartay, R., García Briones, M., Meza Moreira, D., Intriago Estrella, J. y Romero Macias, F. (2019). Caracterización económica de un productor de aguardiente en Junín, Manabí, Ecuador. ECA Sinergia, 10(1), 85-97. https://www.redalyc.org/journal/5885/ 588561543006/movil/https://www.redalyc.org/journal/5885/588561543006/movil/

Cai, Y., Wang, W., Li, L., Wang, Z., Wang, S., Ding, H., Zhang, Z., Sun, L. and Wang, W. (2018). Effective capture of carbon dioxide using hydrated sodium carbonate powders. Materials. Basel, 11(2), 183. https://doi.org/10.3 390/ma11020183

Christofoletti, C., Escher, J., Correia, J., Julia Fernanda Urbano, J. and Fontanetti, C., (2013). Sugarcane vinasse: Environmental implications of its use. Waste Management, 33(12), 2752-2761. https://pubmed.ncbi.nlm.nih.gov/24084103/

Dirbeba, M. J., Brink, A, Zevenhoven, M., Demartini, N., Lindber, D. and Hupa L. (2019). Characterization of vinasse for thermochemical conversion -fuel fractionation, release of inorganics, and ash melting behavior. Energy and Fuels, 33(7), 5840-5848. https://www.researchgate.net/publication/340255432_Effect_of_different_heat_ treatments_of_inoculum_on_the_production_of_hydrogen_and_volatile_fatty_acids_by_dark_fermentation_of_sugarcane_vinasse

España-Gamboa, E., Mijangos-Cortes, J., Barahona-Pérez, L., Domínguez-Maldonado, J., Hernández-Zarate, G. and Álzate-Gaviria, L. (2011). Vinasses: Characterization and treatments. Waste Manag Res., 29(12), 1235-1250. https://pubmed.ncbi.nlm.nih.gov/ 21242176/

González, J., Buedo, S. y Prado F. (2019). La fertirrigación con vinaza de caña de azúcar limita la tasa fotosintética de soja (Glycine max, Leguminosae). Bol. Soc. Argent. Bot, 54, 215-223.

Higuita-Vásquez, J., Rojas-González, A. and Pineda-Pineda, S. (2020). Conventional and non-conventional alternatives for vinasse management through physical-chemical or biological technologies: A review. DYNA Energía y Sostenibilidad, 9(1), 11 p. DOI: https://doi.org/10.6036/ES9355

Ibarra-Camacho, R., León-Duharte, L. y Osoria-Leyva, A. (2019). Caracterización físico-química de vinazas de destilerías. Revista Cubana de Química, 31(2), 1-10. http://scielo.sld.cu/scielo.php?script=sci_arttext& pid=S2224-54212019000200246

Instituto Ecuatoriano de Normalización. Norma Técnica Ecuatoriana. NTE INEN 2169 (2013). Agua. Calidad del agua. Muestreo. Manejo y conservación de muestras. Primera Edición. 26 p. https://www.insistec.ec/images/insistec/02-cliente/07-descargas/NTE% 20INEN%202169%20-%20AGUA.%20%20CALIDAD%20DEL%20AGUA.%20%20 MUESTREO.%20%20MANEJO%20Y%20CONSERVACI%C3%93N%20DE%20MUESTRAS.pdf

Krishna, R., Kumar, R. and Srivastava S. (2008). Design of optimum response surface experiments for electro-coagulation of distillery spent wash. Water Air Soil Pollut., 191(1-4). 5-13. https://www.research gate.net/publication/248768613_Design_of_ Optimum_Response_Surface_Experiments_for_ElectroCoagulation_of_Distillery_Spent_Wash

Magrini, F. E., Machado de Almeida, G., da Maia Soares, D., Fuentes. L., Ecthebehere, C., Beal, L. L., Moura da Silveira, M. and Paesi, S. (2020). Effect of different heat treatments of inoculum on the production of hydrogen and volatile fatty acids by dark fermentation of sugarcane vinasse. Biomass Convers Biorefinery, 11, 2443-2456. https://www.researchgate.net/publication/340255432_Effect_of_different_heat_ treatments_of_inoculum_on_the_production_of_hydrogen_and_volatile_fatty_acids_by_dark_fermentation_of_sugarcane_vinasse

Malacatus, P., Chamorro, E. y Orellana, G. (2016). Análisis de eficiencia de remoción de contaminantes de los sistemas de tratamiento de aguas residuales en extracción de aceite de palma. FIGEMPA: Investigación y Desarrollo, 1(2), 61-68.

Ministerio del Ambiente. (2015). Acuerdo Nº 97/A - Norma de calidad ambiental y de descarga de efluentes al recurso agua (Anexo 1, Libro VI de la Calidad Ambiental, del Texto Unificado de la Legislación Secundaria del Ministerio del Ambiente). https://www.ambiente.gob.ec/wp-content/uploads/downloads/2018/05/Acuerdo-097.pdf

Moran-Salazar, R., Sánchez-Lizárraga, A., Rodríguez-Campos, J., Dávila-Vázquez, G., Marino-Marmolejo, G., Dendooven, L. and Contreras-Ramos, S. (2016). Utilization of vinasses as soil amendment: consequences and perspectives, SpringerPlus, 5, 1-11. DOI 10.1186/s40064-016- 2410-3

Ospina-León, L., Manotas-Duque, D. y Ramírez-Malule, H. (2023). Desafíos y oportunidades de la vinaza de caña de azúcar. Un análisis bibliométrico. INGENIERÍA Y COMPETITIVIDAD, 25(1). e21312144. https://doi.org/ 10.25100/iyc.v25i1.12144

Romero Rojas, J., A. (1999). Tratamiento de aguas residuales. Teoría y principios de diseño (Tercera edición ed.). Bogotá, Colombia: Editorial Escuela Colombiana de Ingeniería https://www.academia.edu/41246680/Tratamiento_de_Aguas_Residuales_Romero_Rojas

Sharifi, A., Noshahri, N., Mehrjer, M., Ameri, M., Seyedabadi, M. and Kharrazi, M. (2022). Evaluation of using vinasse as fertigation on growth traits of Cucumber (Cucumis sativusL.). Journal of Vegetables. Sciences, Spring & Summer, 6(11), 47-57. doi: 10.22034/iuvs.2022.547109.1191A

Santos, S., Rosa, P. R. F., Sakamoto, I. K., Amâncio Varesche, M. B. and Silva, E. (2014). Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions. Int. J. Hydrogen Energy, 39(18), 9599-9610.

Soto, M., Díaz, C., Zapata, A. and Higuita, J. (2021). BOD and COD removal in vinasses from sugarcane alcoholic distillation by Chlorella vulgaris: Environmental evaluation. Biochemical Engineering Journal, 176, 108191.

TULSMA (2017). Texto Unificado de Legislación Secundaria de Medio Ambiente. Ultima modificación: 29-mar-2017 https://www.ambiente.gob.ec/wpcontent/uploads/down loads/2018/05/TULSMA.pdf

Publicado

2023-12-21

Cómo citar

[1]
Morales Avendaño, E.D. , Navarrete Álava, J. , Garzón Cedeño, F. y Zambrano Lara, M. 2023. Aplicación del NaHCO3 como estrategia fisicoquímica para mitigar el impacto ambiental de la vinaza producida en la destilación de alcohol artesanal . La Técnica. Revista de las Agrociencias. ISSN 2477-8982. 13, 2 (dic. 2023), 93–101. DOI:https://doi.org/10.33936/latecnica.v13i2.6179.

Número

Sección

Agroindustria