MACROMONÓMEROS: SÍNTESIS Y APLICACIONES

MACROMONOMERS: SYNTHESIS AND APPLICATIONS

  • Jesús Miguel Contreras Ramírez Universidad de Los Andes

Resumen

 
Los macromonómeros son ampliamente usados en la síntesis de polímeros ramificados mediante homo y/o copolimerización. Los macromonómeros se utilizan de forma muy exitosa en las polimerizaciones heterogéneas para la obtención de partículas poliméricas usadas como sistemas de liberación controlada de fármacos con alta aplicabilidad en el campo biomédico. Esta revisión presenta diferentes métodos de síntesis de macromonómeros con dobles enlaces como función polimerizable. Además, se hace referencia al uso de los macromonómeros en la obtención de polímeros que poseen arquitecturas definidas y novedosas, aunado a la evaluación del comportamiento cinético y de la reactividad que presentan estos macromonómeros. Por último, se menciona el uso de los monómeros macromoleculares en las polimerizaciones por dispersión como reactivo y como agente dispersante, los que pueden contribuir en gran medida en la fabricación de microesferas que ofrecen potenciales aplicaciones en diferentes campos de la biomedicina.
 
Palabras clave: macromonómeros, polímeros ramificados, función polimerizable, redes anfifílicas
 
Abstract
Macromonomers are widely used in the synthesis of branched polymers by homo and/or copolymerization. The macromonomers are used very successfully in heterogeneous polymerizations for obtaining polymer particles used as controlled drug release systems with high applicability in the biomedical field. This review presents different synthesis methods for macromonomers with double bonds as a polymerizable function. Besides, it is analyzed the usage of macromonomers in obtaining polymers with defined and novel architectures, besides to the evaluation of the macromonomers' kinetic behavior and reactivity presented. Finally, it is analyzed the use of macromolecular monomers in dispersion polymerizations both as a reagent and as a dispersing agent, which can contribute greatly to the manufacture of microspheres that offer potential applications in different fields of biomedicine.
 
Keywords: macromonomers, branched polymers, polymerizable function, amphiphilic networks

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Citas

Akinori, A., Ohmori, S., Yamauchi, Y., y Hirabayashi, T. (2002). Micellar polymerization of amphiphilic poly(vinyl alcohol) macromonomer having a methacrylate end group prepared by aldol-type group-transfer polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 40(24), 4477–4484. Recuperado de https://doi.org/10.1002/pola.10538
Barakat, I., Dubois, Ph., Jérôme, R., y Teyssié, Ph. (1993). Macromolecular engineering of polylactones and polylactides. X. Selective end-functionalization of poly(D,L)-lactide. Journal of Polymer Science Part A: Polymer Chemistry, 31(2), 505–514. Recuperado de https://doi.org/10.1002/pola.1993.080310222
Boutevin, B., David, G., y Boyer, C. (2006). Telechelic Oligomers and Macromonomers by Radical Techniques. In: Oligomers - Polymer Composites - Molecular Imprinting. Advances in Polymer Science, vol 206. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-46830-1
Boyer, C., Loubat, C., Robin, J., y Boutevin, B. (2004). Synthesis of functionalized amine oligomers by free-radical telomerization of methyl methacrylate with a peculiar telogen: 2-Aminoethanethiol hydrochloride. Journal of Polymer Science Part A: Polymer Chemistry, 42(20), 5146–5160. DOI: 10.1002/pola.20303
Breitenkamp, K., Simeone, J., Jin, E., y Emrick, T. (2002). Novel Amphiphilic Graft Copolymers Prepared by Ring-Opening Metathesis Polymerization of Poly(ethylene glycol)-Substituted Cyclooctene Macromonomers. Macromolecules, 35(25), 9249–9252. Recuperado de https://doi.org/10.1021/ma021094v
Chang, H., Li, Ch., Huang, R., Su, R., Qiac, W., y Hea, Z. (2019). Amphiphilic hydrogels for biomedical applications. Journal of Materials Chemistry B, 10(18), 2891-3036. Recuperado de https://pubs.rsc.org/en/content/articlelanding/2019/tb/c9tb00073a#!divAbstract
Chen, D., Kennedy, J., y Allen, A. (1988). Amphiphilic Networks. I. Network synthesis by copolymerization of methacryloyl-capped polyisobutylene with 2-(dimethylamino) ethyl methacrylate and characterization of the networks. Journal of Macromolecular Science, Pure and Applied Chemistry, 25(4), 389-401.
Cho, H., Krys, P., Szcześniak, K., Schroeder, H., Park, S., Jurga, S., Buback, M., y Matyjaszewski, K. (2015). Synthesis of Poly(OEOMA) Using Macromonomers via “Grafting-Through” ATRP. Macromolecules, 48(18), 6385-6395. DOI: 10.1021/acs.macromol.5b01592.
Christodoulou, S., Iatrou, H., Lohse, D., y Hadjichristidis, N. (2005). Anionic copolymerization of styrenic-tipped macromonomers: A route to novel triblock–comb copolymers of styrene and isoprene. Journal of Polymer Science Part A: Polymer Chemistry, 43(18), 4030–4039. DOI: 10.1002/pola.20890
Cianga, I., y Yagci, Y. (2002). Synthesis and characterization of comb-like polyphenylenes via Suzuki coupling of polystyrene macromonomers prepared by atom transfer radical polymerization. European Polymer Journal, 38(4), 695-703. Recuperado de https://doi.org/10.1016/S0014-3057(01)00245-2
Contreras, J., Medina, D., y López-Carrasquero, F. (2014). Síntesis y polimerización de bismacromonómeros de polietilenglicol. Avances en Química, 9(3), 107-114. Recuperado de https://pdfs.semanticscholar.org/6f7d/25930c238ddba969f790a541f46f98cb6261.pdf
Contreras, J., Medina, D., y López-Carrasquero, F. (2016). Síntesis y polimerización de bis-macromonómeros de poli(ε-caprolactona). Avances en Química, 11(2), 77-85. Recuperado de https://www.redalyc.org/pdf/933/93347418004.pdf
Contreras; J.M., Medina, D.A., y López–Carrasquero, F. (2017). Síntesis de redes anfifílicas: copolimerización de bismacromonómeros de policaprolactona y poli(etilen glicol). Revista Iberoamericana de Polímeros, 18(1), 47–62. Recuperado de https://reviberpol.files.wordpress.com/2019/06/2017-18-1-contreras-y-col.pdf
Cretu, A., Gattin, R., Brachais, L., y Barbier-Baudry, D. (2004). Synthesis and degradation of poly(2-hydroxyethyl methacrylate)-graft-poly(ε-caprolactone) copolymers. Polymer Degradation and Stability, 83(3), 399-404. DOI: 10.1016/j.polymdegradstab.2003.09.001
Dakin, J.M., Shanmugam, K., Twigg, Ch., Whitney, R.A., y Parent, J.S. (2015). Isobutylene‐rich macromonomers: Dynamics and yields of peroxide‐initiated crosslinking. Journal of Polymer Science, Part A, Polymer Chemistry, 53(1), 123-132.
Degirmenci, M., Izgin, O., y Yagci, Y. (2004). Synthesis and characterization of cyclohexene oxide functional poly(ε-caprolactone) macromonomers and their use in photoinitiated cationic homo- and copolymerization”. Journal of Polymer Science Part A: Polymer Chemistry, 42(13), 3365–3372. Recuperado de https://doi.org/10.1002/pola.20223
Eguiburu, J., Fernandez, M., y San Román, J. (2000). Ring opening polymerisation of L-lactide initiated by oxyethyl methacrylate–aluminium trialkoxides Part 2. End groups exchange. Polymer, 41(17), 6439-6445. DOI: 10.1016/S0032-3861(99)00876-9
Escobar, J., Salmerón, M., Sabater, R., Meseguer, J., Gómez, J., y Monleón, M. (2006). Structure and Properties of Poly(ε‐caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 207(23), 2195-2205. DOI: 10.1002/macp.200600399
Gur’eva, L., Tkachuk, A., Komarov, B., Bogdanova, L., Estrina, G., Surkov, N., y Rozenberg, B. (2009). Synthesis of amphiphilic network copolymers based on poly(ester dimethacrylates. Polymer Science Series C, 51(1), 57-62. Recuperado de https://doi.org/10.1134/S181123820901010X
Hadjichristidis, N., Iatrou, H., Pitsikalis, M., y Mays, J. (2006). Macromolecular architectures by living and controlled/living polymerizations. Progress in Polymer Science, 31(12), 1068-1132. DOI: 10.1016/j.progpolymsci.2006.07.002
Hawker, C.J., Bosman, A.W., y Harth, E. (2001). New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chemical review, 101(12), 3361-3688. DOI: 10.1021/cr990119u
Hawker, C.J., Mecerreyes, D., Elce, E., Dao, J., Hedrick, J.L., Barakat, I., Dubois, P., Jérôme, R., y Volksen I. (1997). “Living” free radical polymerization of macromonomers: preparation of well-defined graft copolymers. Macromolecular Chemistry and Physics, 198, 155–166.
Ishizu, K., Shen, X., y Tsubaki, K. (2000). Radical copolymerization reactivity of methacryloyl-terminated poly(ethylene glycol methylether) with vinylbenzyl-terminated polystyrene macromonomers. Polymer, 41(6), 2053-2057.
Ito, K. (1998). Polymeric design by macromonomer technique. Progress in Polymer Science, 23(4), 581-620. Recuperado de http://polymer.chem.cmu.edu/~kmatweb/2002/Jan-02/PSS/PPS98ItoMacromonomers.pdf
Ito, K., y Kawaguchi, S. (1999). Poly(macromonomers): Homo- and Copolymerization. In: Roovers J. (eds) Branched Polymers I. Advances in Polymer Science, vol 142. Springer, Berlin, Heidelberg.
Ito, K., Tsuchida, H., Hayashi, A., Kitano, T., Yamada, E., y Matsumoto, E. (1985). Reactivity of Poly(ethylene oxide) Macromonomers in Radical Copolymerization. Polymer Journal, 17(7), 827-839. Recuperado de https://doi.org/10.1295/polymj.17.827
Ivan, B., Feldthusen, J., y Müller, A. (1996). Synthesis strategies and properties of smart amphiphilic networks. Macromolecular Symposia, 102(1), 81-90. DOI: 10.1002/masy.19961020112
Izawa, M., Nunomoto, S., y Kawakami, Y. (1993). Synthesis and polimerization of aromatic polyamide and polyester macromonomers. Polymer journal, 25(8), 873-881. Recuperado de https://doi.org/10.1295/polymj.25.873
Kaneyoshi, H., y Matyjaszewski, K. (2007). Synthesis of a linear polyethylene macromonomer and preparation of polystyrene-graft-polyethylene copolymers via grafting-through atom transfer radical polymerization. Journal of Applied Polymer Science, 105(1), 3-13. Recuperado de https://doi.org/10.1002/app.26048
Kim, S., Lee, K., Jung, H., Shim, S., Lee, B., y Choe, S. (2005). Macromonomers having different molecular weights of polyethylene glycol and end group functionalities in dispersion polymerization of styrene. Polymer, 46(19), 7974–7981. DOI: 10.1016/j.polymer.2005.06.055
Kuckling, D., y Wohlrab, S. (2002). Synthesis and characterization of biresponsive graft copolymer gels. Polymer, 43(4), 1533-1536. Recuperado de https://doi.org/10.1016/S0032-3861(01)00731-5
Kunisada, H., Yuki, Y., Kondo, S., Nishimori, Y., y Masuyama, A. (1991). “Synthesis of new polyguanamine macromonomers by self-polyaddition and their copolymerization”. Polymer Journal, 23(12), 1455-1465. Recuperado de https://doi.org/10.1295/polymj.23.1455
Lievens, S., y Goethals, E. (1996). Synthesis of end-group functionalized poly(octadecyl vinyl ether). Polymer International, 41(3), 277–282. Recuperado de https://doi.org/10.1002/(SICI)1097-0126(199611)41:3<277::AID-PI593>3.0.CO;2-%23
Mangeon, C., Renard, E., Thevenieau, F., y Langlois, V. (2017). Networks based on biodegradable polyesters: An overview of the chemical ways of crosslinking. Materials Science and Engineering: C, 80(1), 760-770. DOI: 10.1016/j.msec.2017.07.020
Matyjaszewski, K., Beers, K., Kernd, A., y Gaynor, S. (1998). Hydrogels by atom transfer radical polymerization. I. Poly(N-vinylpyrrolidinone-g-styrene) via the macromonomer method. Journal of Polymer Science Part A: Polymer Chemistry, 36(5), 823–830.
Mespouille, L., Hedrick, J., y Dubois Ph. (2009). Expanding the role of chemistry to produce new amphiphilic polymer (co)networks. Soft Matter, 5(24), 4878-4892. https://doi.org/10.1039/B910041P
Moad, G., y Rizzardo, E. (2016). The history of nitroxide-mediated polymerization. In Nitroxide mediated polymerization: from fundamentals to applications in materials science. Edited by Didier Gigmes. Royal Society of Chemistry, Cambridge-UK.
Ohnaga, T., y Sato, T. (1996). Synthesis of poly(vinyl acetate) macromonomers and preparation of poly(vinyl acetate) grafted copolymers and poly(vinyl alcohol) grafted copolymers. Polymer, 37(16), 3729-3735. Recuperado de https://doi.org/10.1016/0032-3861(96)00176-0
Ohtaki, H., Deplace, F., Vo, G.D., LaPointe, A.M., Shimizu, F., Sugano, T., Kramer, E.J., Fredrickson, G.H., y Coates, G.W. (2015). Allyl-Terminated Polypropylene Macromonomers: A Route to Polyolefin Elastomers with Excellent Elastic Behavior. Macromolecules, 48(20), 7489-7494. Recuperado de https://doi.org/10.1021/acs.macromol.5b01975
Patton, D., y Advincula, R. (2006). A versatile synthesis route to macromonomers via RAFT polymerization. Macromolecules, 39(25), 8674-8683. Recuperado de https://doi.org/10.1021/ma061382h
Rempp, P.F., y Franta, E. (1984). Macromonomers: Synthesis, characterization and applications. In: Polymerization Reactions. Advances in Polymer Science, vol 58. Springer, Berlin, Heidelberg.
Sabater, R., Escobar, J., Meseguer, J., Balado, A., Gómez, J., y Salmerón M. (2009). Segmental dynamics in poly(ε‐caprolactone)/poly(L‐lactide) copolymer networks. Journal of Polymer Science, Part B: Polymer Physics, 47(2), 183-193.
Schnabelrauch, M., Vogt, S., Larcher, Y., y Wilke, I. (2002). Biodegradable polymer networks based on oligolactide macromers: synthesis, properties and biomedical applications. Biomolecular Engineering, 19(2-6), 295-298.
Schreur-Piet, I., y Heuts; J. (2017). In situ stabilizer formation from methacrylic acid macromonomers in emulsion polymerization. Polymer Chemistry, 8(43), 6654-6664. Recuperado de https://doi.org/10.1039/C7PY01583F
Se, K., Inoue, N., y Yamashita, M. (2005). Anionic living polymerization of macromonomers: Preparation of a particle-like purging reagent and characterization of poly(macromonomer)s. Polymer, 46(23), 9753–9761.
Shinoda, H., y Matyjaszewski, K. (2001). Structural Control of Poly(Methyl Methacrylate)-g-poly(Lactic Acid) Graft Copolymers by Atom Transfer Radical Polymerization (ATRP). Macromolecules, 34(18), 6243–6248. Recuperado de https://doi.org/10.1021/ma0105791
Teodorescu, M. (2001). Synthesis of (vinyl acetate)-terminated polystyrene macromonomers by free-radical polymerization in the presence of vinyl iodoacetate. European Polymer Journal, 37(7), 1417-1422. DOI: 10.1016/S0014-3057(00)00253-6
Tortosa, K., Miola, C., y Hamaide, T. (1997). Synthesis of low molecular weight-hydroxy polycaprolactone macromonomers by coordinated anionic polymerization in protic conditions. Journal of Applied Polymer Science, 65(12), 2357–2372.
Weber, M., y Stadler, R. (1988). Hydrophilic-hydrophobic two-component polymer networks: 1. Synthesis of reactive poly(ethylene oxide) telechelics. Polymer, 29(6), 1064-1070. Recuperado de https://doi.org/10.1016/0032-3861(88)90016-X
Wohlrab, S., y Kuckling, D. (2001). Multisensitive Polymers Based on 2-Vinylpyridine and N-Isopropylacrylamide. Journal of Polymer Science: Part A: Polymer Chemistry, 39(21), 3797–3804. Recuperado de https://doi.org/10.1002/pola.10026
Wood, C., y Cooper, A. (2003). Synthesis of Polystyrene by Dispersion Polymerization in 1,1,1,2-Tetrafluoroethane (R134a) Using Inexpensive Hydrocarbon Macromonomer Stabilizers. Macromolecules, 36(20), 7534–7542. Recuperado de https://doi.org/10.1021/ma030063c
Yamada, K., Miyazaki, M., Ohno, K., Fukuda, T., y Minoda, M. (1999). Atom Transfer Radical Polymerization of Poly(vinyl ether) Macromonomers. Macromolecules, 32(2), 290–293. Recuperado de https://doi.org/10.1021/ma981415w
Zhang, X., y Dai, Y. (2019). Recent development of brush polymers via polymerization of poly(ethylene glycol)-based macromonomers. Polymer Chemistry, 10(18), 2212-2. Recuperado de https://doi.org/10.1039/C9PY00104B
Publicado
2020-04-30
Sección
Ciencias Químicas