Macromonomers: synthesis and applications
MACROMONOMERS: SYNTHESIS AND APPLICATIONS
DOI:
https://doi.org/10.33936/rev_bas_de_la_ciencia.v5i1.1904Keywords:
macromonomers, branched polymers, polymerizable function, amphiphilic networks.Abstract
The macromonomers are widely used in the synthesis of branched polymers by means of the homo and / or copolymerization of these; in addition currently the macromonomers are used very successfully in the heterogeneous polymerizations for obtaining polymer particles used as release systems controlled drugs, with a high applicability in the biomedical field. In the following review the different synthesis methods of macromonomers with double bonds as a polymerizable function are presented, in addition reference is made to the use of macromonomers in obtaining polymers with defined and novel architectures; together with the evaluation of the kinetic behavior and reactivity that macromonomers present. Finally, it is mentioned how macromolecular monomers are used in dispersion polymerizations as reactive and as a dispersing agent, at the same time, contributing greatly in the manufacture of microspheres with potential applications in different fields of biomedicine.
Downloads
References
Barakat, I., Dubois, Ph., Jérôme, R., y Teyssié, Ph. (1993). Macromolecular engineering of polylactones and polylactides. X. Selective end-functionalization of poly(D,L)-lactide. Journal of Polymer Science Part A: Polymer Chemistry, 31(2), 505–514. Recuperado de https://doi.org/10.1002/pola.1993.080310222
Boutevin, B., David, G., y Boyer, C. (2006). Telechelic Oligomers and Macromonomers by Radical Techniques. In: Oligomers - Polymer Composites - Molecular Imprinting. Advances in Polymer Science, vol 206. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-46830-1
Boyer, C., Loubat, C., Robin, J., y Boutevin, B. (2004). Synthesis of functionalized amine oligomers by free-radical telomerization of methyl methacrylate with a peculiar telogen: 2-Aminoethanethiol hydrochloride. Journal of Polymer Science Part A: Polymer Chemistry, 42(20), 5146–5160. DOI: 10.1002/pola.20303
Breitenkamp, K., Simeone, J., Jin, E., y Emrick, T. (2002). Novel Amphiphilic Graft Copolymers Prepared by Ring-Opening Metathesis Polymerization of Poly(ethylene glycol)-Substituted Cyclooctene Macromonomers. Macromolecules, 35(25), 9249–9252. Recuperado de https://doi.org/10.1021/ma021094v
Chang, H., Li, Ch., Huang, R., Su, R., Qiac, W., y Hea, Z. (2019). Amphiphilic hydrogels for biomedical applications. Journal of Materials Chemistry B, 10(18), 2891-3036. Recuperado de https://pubs.rsc.org/en/content/articlelanding/2019/tb/c9tb00073a#!divAbstract
Chen, D., Kennedy, J., y Allen, A. (1988). Amphiphilic Networks. I. Network synthesis by copolymerization of methacryloyl-capped polyisobutylene with 2-(dimethylamino) ethyl methacrylate and characterization of the networks. Journal of Macromolecular Science, Pure and Applied Chemistry, 25(4), 389-401.
Cho, H., Krys, P., Szcześniak, K., Schroeder, H., Park, S., Jurga, S., Buback, M., y Matyjaszewski, K. (2015). Synthesis of Poly(OEOMA) Using Macromonomers via “Grafting-Through” ATRP. Macromolecules, 48(18), 6385-6395. DOI: 10.1021/acs.macromol.5b01592.
Christodoulou, S., Iatrou, H., Lohse, D., y Hadjichristidis, N. (2005). Anionic copolymerization of styrenic-tipped macromonomers: A route to novel triblock–comb copolymers of styrene and isoprene. Journal of Polymer Science Part A: Polymer Chemistry, 43(18), 4030–4039. DOI: 10.1002/pola.20890
Cianga, I., y Yagci, Y. (2002). Synthesis and characterization of comb-like polyphenylenes via Suzuki coupling of polystyrene macromonomers prepared by atom transfer radical polymerization. European Polymer Journal, 38(4), 695-703. Recuperado de https://doi.org/10.1016/S0014-3057(01)00245-2
Contreras, J., Medina, D., y López-Carrasquero, F. (2014). Síntesis y polimerización de bismacromonómeros de polietilenglicol. Avances en Química, 9(3), 107-114. Recuperado de https://pdfs.semanticscholar.org/6f7d/25930c238ddba969f790a541f46f98cb6261.pdf
Contreras, J., Medina, D., y López-Carrasquero, F. (2016). Síntesis y polimerización de bis-macromonómeros de poli(ε-caprolactona). Avances en Química, 11(2), 77-85. Recuperado de https://www.redalyc.org/pdf/933/93347418004.pdf
Contreras; J.M., Medina, D.A., y López–Carrasquero, F. (2017). Síntesis de redes anfifílicas: copolimerización de bismacromonómeros de policaprolactona y poli(etilen glicol). Revista Iberoamericana de Polímeros, 18(1), 47–62. Recuperado de https://reviberpol.files.wordpress.com/2019/06/2017-18-1-contreras-y-col.pdf
Cretu, A., Gattin, R., Brachais, L., y Barbier-Baudry, D. (2004). Synthesis and degradation of poly(2-hydroxyethyl methacrylate)-graft-poly(ε-caprolactone) copolymers. Polymer Degradation and Stability, 83(3), 399-404. DOI: 10.1016/j.polymdegradstab.2003.09.001
Dakin, J.M., Shanmugam, K., Twigg, Ch., Whitney, R.A., y Parent, J.S. (2015). Isobutylene‐rich macromonomers: Dynamics and yields of peroxide‐initiated crosslinking. Journal of Polymer Science, Part A, Polymer Chemistry, 53(1), 123-132.
Degirmenci, M., Izgin, O., y Yagci, Y. (2004). Synthesis and characterization of cyclohexene oxide functional poly(ε-caprolactone) macromonomers and their use in photoinitiated cationic homo- and copolymerization”. Journal of Polymer Science Part A: Polymer Chemistry, 42(13), 3365–3372. Recuperado de https://doi.org/10.1002/pola.20223
Eguiburu, J., Fernandez, M., y San Román, J. (2000). Ring opening polymerisation of L-lactide initiated by oxyethyl methacrylate–aluminium trialkoxides Part 2. End groups exchange. Polymer, 41(17), 6439-6445. DOI: 10.1016/S0032-3861(99)00876-9
Escobar, J., Salmerón, M., Sabater, R., Meseguer, J., Gómez, J., y Monleón, M. (2006). Structure and Properties of Poly(ε‐caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 207(23), 2195-2205. DOI: 10.1002/macp.200600399
Gur’eva, L., Tkachuk, A., Komarov, B., Bogdanova, L., Estrina, G., Surkov, N., y Rozenberg, B. (2009). Synthesis of amphiphilic network copolymers based on poly(ester dimethacrylates. Polymer Science Series C, 51(1), 57-62. Recuperado de https://doi.org/10.1134/S181123820901010X
Hadjichristidis, N., Iatrou, H., Pitsikalis, M., y Mays, J. (2006). Macromolecular architectures by living and controlled/living polymerizations. Progress in Polymer Science, 31(12), 1068-1132. DOI: 10.1016/j.progpolymsci.2006.07.002
Hawker, C.J., Bosman, A.W., y Harth, E. (2001). New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chemical review, 101(12), 3361-3688. DOI: 10.1021/cr990119u
Hawker, C.J., Mecerreyes, D., Elce, E., Dao, J., Hedrick, J.L., Barakat, I., Dubois, P., Jérôme, R., y Volksen I. (1997). “Living” free radical polymerization of macromonomers: preparation of well-defined graft copolymers. Macromolecular Chemistry and Physics, 198, 155–166.
Ishizu, K., Shen, X., y Tsubaki, K. (2000). Radical copolymerization reactivity of methacryloyl-terminated poly(ethylene glycol methylether) with vinylbenzyl-terminated polystyrene macromonomers. Polymer, 41(6), 2053-2057.
Ito, K. (1998). Polymeric design by macromonomer technique. Progress in Polymer Science, 23(4), 581-620. Recuperado de http://polymer.chem.cmu.edu/~kmatweb/2002/Jan-02/PSS/PPS98ItoMacromonomers.pdf
Ito, K., y Kawaguchi, S. (1999). Poly(macromonomers): Homo- and Copolymerization. In: Roovers J. (eds) Branched Polymers I. Advances in Polymer Science, vol 142. Springer, Berlin, Heidelberg.
Ito, K., Tsuchida, H., Hayashi, A., Kitano, T., Yamada, E., y Matsumoto, E. (1985). Reactivity of Poly(ethylene oxide) Macromonomers in Radical Copolymerization. Polymer Journal, 17(7), 827-839. Recuperado de https://doi.org/10.1295/polymj.17.827
Ivan, B., Feldthusen, J., y Müller, A. (1996). Synthesis strategies and properties of smart amphiphilic networks. Macromolecular Symposia, 102(1), 81-90. DOI: 10.1002/masy.19961020112
Izawa, M., Nunomoto, S., y Kawakami, Y. (1993). Synthesis and polimerization of aromatic polyamide and polyester macromonomers. Polymer journal, 25(8), 873-881. Recuperado de https://doi.org/10.1295/polymj.25.873
Kaneyoshi, H., y Matyjaszewski, K. (2007). Synthesis of a linear polyethylene macromonomer and preparation of polystyrene-graft-polyethylene copolymers via grafting-through atom transfer radical polymerization. Journal of Applied Polymer Science, 105(1), 3-13. Recuperado de https://doi.org/10.1002/app.26048
Kim, S., Lee, K., Jung, H., Shim, S., Lee, B., y Choe, S. (2005). Macromonomers having different molecular weights of polyethylene glycol and end group functionalities in dispersion polymerization of styrene. Polymer, 46(19), 7974–7981. DOI: 10.1016/j.polymer.2005.06.055
Kuckling, D., y Wohlrab, S. (2002). Synthesis and characterization of biresponsive graft copolymer gels. Polymer, 43(4), 1533-1536. Recuperado de https://doi.org/10.1016/S0032-3861(01)00731-5
Kunisada, H., Yuki, Y., Kondo, S., Nishimori, Y., y Masuyama, A. (1991). “Synthesis of new polyguanamine macromonomers by self-polyaddition and their copolymerization”. Polymer Journal, 23(12), 1455-1465. Recuperado de https://doi.org/10.1295/polymj.23.1455
Lievens, S., y Goethals, E. (1996). Synthesis of end-group functionalized poly(octadecyl vinyl ether). Polymer International, 41(3), 277–282. Recuperado de https://doi.org/10.1002/(SICI)1097-0126(199611)41:3<277::AID-PI593>3.0.CO;2-%23
Mangeon, C., Renard, E., Thevenieau, F., y Langlois, V. (2017). Networks based on biodegradable polyesters: An overview of the chemical ways of crosslinking. Materials Science and Engineering: C, 80(1), 760-770. DOI: 10.1016/j.msec.2017.07.020
Matyjaszewski, K., Beers, K., Kernd, A., y Gaynor, S. (1998). Hydrogels by atom transfer radical polymerization. I. Poly(N-vinylpyrrolidinone-g-styrene) via the macromonomer method. Journal of Polymer Science Part A: Polymer Chemistry, 36(5), 823–830.
Mespouille, L., Hedrick, J., y Dubois Ph. (2009). Expanding the role of chemistry to produce new amphiphilic polymer (co)networks. Soft Matter, 5(24), 4878-4892. https://doi.org/10.1039/B910041P
Moad, G., y Rizzardo, E. (2016). The history of nitroxide-mediated polymerization. In Nitroxide mediated polymerization: from fundamentals to applications in materials science. Edited by Didier Gigmes. Royal Society of Chemistry, Cambridge-UK.
Ohnaga, T., y Sato, T. (1996). Synthesis of poly(vinyl acetate) macromonomers and preparation of poly(vinyl acetate) grafted copolymers and poly(vinyl alcohol) grafted copolymers. Polymer, 37(16), 3729-3735. Recuperado de https://doi.org/10.1016/0032-3861(96)00176-0
Ohtaki, H., Deplace, F., Vo, G.D., LaPointe, A.M., Shimizu, F., Sugano, T., Kramer, E.J., Fredrickson, G.H., y Coates, G.W. (2015). Allyl-Terminated Polypropylene Macromonomers: A Route to Polyolefin Elastomers with Excellent Elastic Behavior. Macromolecules, 48(20), 7489-7494. Recuperado de https://doi.org/10.1021/acs.macromol.5b01975
Patton, D., y Advincula, R. (2006). A versatile synthesis route to macromonomers via RAFT polymerization. Macromolecules, 39(25), 8674-8683. Recuperado de https://doi.org/10.1021/ma061382h
Rempp, P.F., y Franta, E. (1984). Macromonomers: Synthesis, characterization and applications. In: Polymerization Reactions. Advances in Polymer Science, vol 58. Springer, Berlin, Heidelberg.
Sabater, R., Escobar, J., Meseguer, J., Balado, A., Gómez, J., y Salmerón M. (2009). Segmental dynamics in poly(ε‐caprolactone)/poly(L‐lactide) copolymer networks. Journal of Polymer Science, Part B: Polymer Physics, 47(2), 183-193.
Schnabelrauch, M., Vogt, S., Larcher, Y., y Wilke, I. (2002). Biodegradable polymer networks based on oligolactide macromers: synthesis, properties and biomedical applications. Biomolecular Engineering, 19(2-6), 295-298.
Schreur-Piet, I., y Heuts; J. (2017). In situ stabilizer formation from methacrylic acid macromonomers in emulsion polymerization. Polymer Chemistry, 8(43), 6654-6664. Recuperado de https://doi.org/10.1039/C7PY01583F
Se, K., Inoue, N., y Yamashita, M. (2005). Anionic living polymerization of macromonomers: Preparation of a particle-like purging reagent and characterization of poly(macromonomer)s. Polymer, 46(23), 9753–9761.
Shinoda, H., y Matyjaszewski, K. (2001). Structural Control of Poly(Methyl Methacrylate)-g-poly(Lactic Acid) Graft Copolymers by Atom Transfer Radical Polymerization (ATRP). Macromolecules, 34(18), 6243–6248. Recuperado de https://doi.org/10.1021/ma0105791
Teodorescu, M. (2001). Synthesis of (vinyl acetate)-terminated polystyrene macromonomers by free-radical polymerization in the presence of vinyl iodoacetate. European Polymer Journal, 37(7), 1417-1422. DOI: 10.1016/S0014-3057(00)00253-6
Tortosa, K., Miola, C., y Hamaide, T. (1997). Synthesis of low molecular weight-hydroxy polycaprolactone macromonomers by coordinated anionic polymerization in protic conditions. Journal of Applied Polymer Science, 65(12), 2357–2372.
Weber, M., y Stadler, R. (1988). Hydrophilic-hydrophobic two-component polymer networks: 1. Synthesis of reactive poly(ethylene oxide) telechelics. Polymer, 29(6), 1064-1070. Recuperado de https://doi.org/10.1016/0032-3861(88)90016-X
Wohlrab, S., y Kuckling, D. (2001). Multisensitive Polymers Based on 2-Vinylpyridine and N-Isopropylacrylamide. Journal of Polymer Science: Part A: Polymer Chemistry, 39(21), 3797–3804. Recuperado de https://doi.org/10.1002/pola.10026
Wood, C., y Cooper, A. (2003). Synthesis of Polystyrene by Dispersion Polymerization in 1,1,1,2-Tetrafluoroethane (R134a) Using Inexpensive Hydrocarbon Macromonomer Stabilizers. Macromolecules, 36(20), 7534–7542. Recuperado de https://doi.org/10.1021/ma030063c
Yamada, K., Miyazaki, M., Ohno, K., Fukuda, T., y Minoda, M. (1999). Atom Transfer Radical Polymerization of Poly(vinyl ether) Macromonomers. Macromolecules, 32(2), 290–293. Recuperado de https://doi.org/10.1021/ma981415w
Zhang, X., y Dai, Y. (2019). Recent development of brush polymers via polymerization of poly(ethylene glycol)-based macromonomers. Polymer Chemistry, 10(18), 2212-2. Recuperado de https://doi.org/10.1039/C9PY00104B