Síntesis y caracterización de xerogeles de sílice obtenidos por la ruta de los atranos

Synthesis and characterization of silica xerogel obtained by the atrane route

Autores/as

  • Lenin Jose Huerta Universidad Técnica de Manabí
  • Rebeca Torres Fajardo Universidad del Zulia
  • Juan Primera Ferrer Universidad Técnica de Manabí

DOI:

https://doi.org/10.33936/rev_bas_de_la_ciencia.v5i3.2355

Palabras clave:

xerogel, atrano, surfactante, sílice, gelificación

Resumen

  En este trabajo se investigó la síntesis de xerogeles de sílice por la vía de los atranos, y se evaluó la influencia de la concentración del agente iniciador (HCl) y la presencia o no del surfactante (CTAB), sobre el tiempo de gelificación y las propiedades texturales de los materiales obtenidos. Las caracterizaciones se realizaron mediante: isotermas de adsorción-desorción de nitrógeno, microscopía electrónica de barrido y calorimetría diferencial de barrido. Los tiempos de gelificación aumentaron en la medida que se disminuyó la concentración del HCl y, en general, los xerogeles preparados presentaron una buena rigidez cuando estos se dejaron a tiempos mayores de 20 horas. La distribución de tamaño de poro (determinada mediante la técnica BJH) para los xerogeles calcinados preparados sin surfactante presentaron un sistema de poro bien definido de 16,4 nm en promedio, mientras los xerogeles calcinados preparados con surfactante no presentaron una distribución de tamaño de poro bien definida, ambos casos mostraron áreas superficiales de alrededor de 580 m2/g. Por calorimetría diferencial de barrido se observaron dos picos para la muestra de xerogel sin surfactante, uno alrededor de 80 °C debido a la evaporación del agua y el otro a 265 °C atribuido a la descomposición de la materia orgánica presente en el gel; para la muestra de xerogel con surfactante se observó un pico bien definido a 130 °C, atribuido a la pérdida del agua. Por microscopía electrónica de barrido, en los xerogeles calcinados se observaron poros con tamaños alrededor de los 15 nm.   Palabra clave: Xerogel, atrano, surfactante, sílice, gelificación.   Abstract In this work, the synthesis of silica xerogels by the atrane way was investigated, evaluating: concentration influence of the initiating agent (HCl) and the presence or not of the surfactant (CTAB), over gelation time, and the textural properties of the obtained materials. Characterizations were carried out by nitrogen adsorption-desorption isotherms, scanning electron microscopy, and differential scanning calorimetry. Gelation times increased as the HCl concentration decreased, and, in general, xerogels prepared presented good rigidity when they were aging for times greater than 20 hours. Pore size distribution (determined by the BJH technique) for the calcined xerogels prepared without surfactant presented a well-defined pore system of 16.4 nm on average, while the calcined xerogels prepared with surfactant did not present a well-defined pore size distribution, both cases showed surface areas of around 580 m2/g. In differential scanning calorimetry, two peaks were observed for the xerogel sample without surfactant, one around 80 °C due to water evaporation, and the other one at 265 °C attributed to the decomposition of organic matter present in the gel; for the surfactant xerogel sample, a well-defined peak was observed at 130 °C, attributed to the loss of water. By scanning electron microscopy, pores with sizes around 15 nm in calcined xerogels were observed.   Keywords: Xerogel, atrane, surfactant, silica, gelation.

 

Descargas

La descarga de datos todavía no está disponible.

Citas

Bailón-García, E., Drwal, E., Grzybek, T., Henriques, C., & Ribeiro, M. F. (2020). Catalysts based on carbon xerogels with high catalytic activity for the reduction of NOx at low temperatures. Catalysis Todayhttps://doi.org/10.1016/j.cattod.2020.03.004
Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society. https://doi.org/10.1021/ja01145a126
Belton, D. J., Deschaume, O., & Perry, C. C. (2012). An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. The FEBS Journal, 279(10), 1710–1720. https://doi.org/10.1111/j.1742-4658.2012.08531.x
Bhagat, S. D., Park, K.-T., Kim, Y.-H., Kim, J.-S., & Han, J.-H. (2008). A continuous production process for silica aerogel powders based on sodium silicate by fluidized bed drying of wet-gel slurry. Solid State Sciences, 10(9), 1113–1116. https://doi.org/10.1016/ j.solidstatesciences.2007.11.016
Bryans, T. R., Brawner, V. L., & Quitevis, E. L. (2000). Microstructure and Porosity of Silica Xerogel Monoliths Prepared by the Fast Sol-Gel Method. Journal of Sol-Gel Science and Technology, 17(3), 211–217. https://doi.org/10.1023/A:1008711921746
Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., Marcos, M. D., & Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405–420. https://doi.org/10.1016/S1293-2558(00)00152-7
Canal-Rodríguez, M., Rey-Raap, N., Menéndez, J. Á., Montes-Morán, M. A., Figueiredo, J. L., Pereira, M. F. R., & Arenillas, A. (2020). Effect of porous structure on doping and the catalytic performance of carbon xerogels towards the oxygen reduction reaction. Microporous and Mesoporous Materials, 293(September), 109811. https://doi.org/10.1016/ j.micromeso.2019.109811
El Haskouri, J., Cabrera, S., Caldés, M., Alamo, J., Beltrán-Porter, A., Marcos, M. D., Amorós, P., & Beltrán-Porter, D. (2001). Ordered mesoporous materials: Composition and topology control through chemistry. International Journal of Inorganic Materials. https://doi.org/ 10.1016/ S1466-6049(01)00114-3
El Haskouri, J., de Zárate, D. O., Guillem, C., Latorre, J., Caldés, M., Beltrán, A., Beltrán, D., Descalzo, A. B., Rodríguez-López, G., Martínez-Máñez, R., Marcos, M. D., & Amorós, P. (2002). Silica-based powders and monoliths with bimodal pore systems. Chemical Communications. https://doi.org/10.1039/b110883b
Fernandes, J., Fernandes, A. C., Echeverría, J. C., Moriones, P., Garrido, J. J., & Pires, J. (2019). Adsorption of gases and vapours in silica based xerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561, 128–135. https://doi.org/10.1016/ j.colsurfa.2018.10.063
Garrido, M. D., García-Llacer, C., El Haskouri, J., Marcos, M. D., Sánchez-Royo, J. F., Beltrán, A., & Amorós, P. (2018). Atrane complexes chemistry as a tool for obtaining trimodal UVM-7-like porous silica. Journal of Coordination Chemistry. https://doi.org/10.1080/ 00958972 .2018.1442002
Hou, N., Wang, R., Wang, F., Bai, J., Zhou, J., Zhang, L., Hu, J., Liu, S., & Jiao, T. (2020). Fabrication of Hydrogels via Host-Guest Polymers as Highly Efficient Organic Dye Adsorbents for Wastewater Treatment. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsomega.0c00076
Huerta, L., Guillem, C., Latorre, J., Beltrán, A., Beltrán, D., & Amorós, P. (2005). Silica-based macrocellular foam monoliths with hierarchical trimodal pore systems. Solid State Sciences, 7(4), 405–414. https://doi.org/10.1016/j.solidstatesciences.2004.11.004
Iller K. R. (1979). The chemistry of silica solubility. Polymerization, colloid and surface properties, and biochemistry (Wiley-Vch Verlag GmbH (ed.); 1st ed.).
Jae, H. S., Privett, B. J., Kita, J. M., Wightman, R. M., & Schoenfisch, M. H. (2008). Fluorinated xerogel-derived microelectrodes for amperometric nitric oxide sensing. Analytical Chemistry, 80(18), 6850–6859. https://doi.org/10.1021/ac800185x
Karout, A., & Pierre, A. C. (2007). Silica xerogels and aerogels synthesized with ionic liquids. Journal of Non-Crystalline Solids. https://doi.org/10.1016/j.jnoncrysol.2007.06.024
Lev, O., Wu, Z., Bharathi, S., Glezer, V., Modestov, A., Gun, J., Rabinovich, L., & Sampath, S. (1997). Sol−Gel Materials in Electrochemistry. Chemistry of Materials, 9(11), 2354–2375. https://doi.org/10.1021/cm970367b
Li, X., Shi, H., Zhang, L., Chen, J., & Lü, P. (2019). Novel synthesis of SiOx/C composite as high-capacity lithium-ion battery anode from silica-carbon binary xerogel. Chinese Journal of Chemical Engineering. https://doi.org/https://doi.org/10.1016/j.cjche.2019.11.003
Ortiz de Zárate, D., Fernández, L., Beltrán, A., Guillem, C., Latorre, J., Beltrán, D., & Amorós, P. (2008). Expanding the atrane route: Generalized surfactant-free synthesis of mesoporous nanoparticulated xerogels. Solid State Sciences. https://doi.org/10.1016/ j.solidstatesciences.2007.10.014
Poulos, N. G., Hall, J. R., & Leopold, M. C. (2015). Functional layer-by-layer design of xerogel-based first-generation amperometric glucose biosensors. Langmuir, 31(4), 1547–1555. https://doi.org/10.1021/la504358t
Segovia-Sandoval, S. J., Pastrana-Martínez, L. M., Ocampo-Pérez, R., Morales-Torres, S., Berber-Mendoza, M. S., & Carrasco-Marín, F. (2020). Synthesis and characterization of carbon xerogel/graphene hybrids as adsorbents for metronidazole pharmaceutical removal: Effect of operating parameters. Separation and Purification Technology, 237, 116341. https://doi.org/10.1016/j.seppur.2019.116341
Soleimani Dorcheh, A., & Abbasi, M. H. (2008). Silica aerogel; synthesis, properties and characterization. Journal of Materials Processing Technology, 199(1), 10–26. https://doi.org/ 10.1016/j.jmatprotec.2007.10.060
Tian, B., Tang, W., Su, C., & Li, Y. (2018). Reticular V2O5·0.6H2O Xerogel as Cathode for Rechargeable Potassium Ion Batteries. ACS Applied Materials and Interfaces, 10(1), 642–650. https://doi.org/10.1021/acsami.7b15407
Wang, R., Ng, D. H. L., & Liu, S. (2019). Recovery of nickel ions from wastewater by precipitation approach using silica xerogel. Journal of Hazardous Materials, 380, 120826. https://doi.org/10.1016/j.jhazmat.2019.120826
Wang, S., Xu, Y., Miao, J., Liu, M., Ren, B., Zhang, L., & Liu, Z. (2020). Facile synthesis of microporous carbon xerogels for highly selective CO2 adsorption. Journal of Cleaner Production, 253, 120023. https://doi.org/10.1016/j.jclepro.2020.120023

Descargas

Publicado

2020-12-31

Número

Sección

Ciencias Químicas