El silvestrol como agente antiviral de amplio espectro
DOI:
https://doi.org/10.33936/rev_bas_de_la_ciencia.v6i2.2814Palabras clave:
agente antiviral, silvestrol, virus, antiviral agents, silvestrol, virus.Resumen
Las enfermedades virales constituyen una de las principales causas de morbilidad y mortalidad a nivel mundial debido a que algunos virus presentan altas tasas de mutación, desarrollan estrategias para evadir el sistema inmune del hospedador y generan mecanismos de resistencia a varios agentes antivirales. A esta problemática se suman los brotes repentinos de virus emergentes, muchos de los cuales carecen de tratamientos eficaces o vacunas. Por lo tanto, se requiere de nuevos agentes antivirales de origen natural como el silvestrol para ofrecer nuevas alternativas de tratamiento. El objetivo de esta revisión fue realizar un análisis crítico de las investigaciones que contenían información sobre la aplicación del silvestrol como agente antiviral frente a varios virus patógenos, para esto se llevó a cabo la búsqueda de publicaciones científicas en cuatro bases de datos (Scopus, Medline, Web of Science y Cochrane Library), empleando descriptores como: “silvesterol”, “antiviral agent” y “virus” ajustando la ecuación de búsqueda a cada una de las bases. De los 70 artículos recuperados, tras aplicar los criterios de exclusión e inclusión se seleccionaron 8 artículos en los que se reporta un efecto antiviral del silvestrol al actuar sobre la helicasa ARN eIF4A del huésped e inhibir la traducción viral.
Descargas
Citas
Alachkar, H., Santhanam, R., Harb, J. G., Lucas, D. M., Oaks, J. J., Hickey, C. J., Pan, L., Kinghorn, A. D., Caligiuri, M. A., Perrotti, D., Byrd, J. C., Garzon, R., Grever, M. R., & Marcucci, G. (2013). Silvestrol exhibits significant in vivo and in vitro antileukemic activities and inhibits FLT3 and miR-155 expressions in acute myeloid leukemia. Journal of Hematology and Oncology, 6(1). https://doi.org/10.1186/1756-8722-6-21
Biedenkopf, N., Lange-Grünweller, K., Schulte, F. W., Weißer, A., Müller, C., Becker, D., Becker, S., Hartmann, R. K., & Grünweller, A. (2017). The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antiviral Research, 137, 76–81. https://doi.org/10.1016/j.antiviral.2016.11.011
Brian, D. A., & Baric, R. S. (2005). Coronavirus genome structure and replication. Current Topics in Microbiology and Immunology, 287, 1–30. https://doi.org/10.1007/3-540-26765-4_1
Cencic, R., Carrier, M., Galicia-Vázquez, G., Bordeleau, M.-E., Sukarieh, R., Bourdeau, A., Brem, B., Teodoro, J. G., Greger, H., Tremblay, M. L., Porco, J. A., & Pelletier, J. (2009). Antitumor Activity and Mechanism of Action of the Cyclopenta[b]benzofuran, Silvestrol. PLoS ONE, 4(4), e5223. https://doi.org/10.1371/journal.pone.0005223
Chu, J., Galicia-Vázquez, G., Cencic, R., Mills, J. R., Katigbak, A., Porco, J. A., & Pelletier, J. (2016). CRISPR-Mediated Drug-Target Validation Reveals Selective Pharmacological Inhibition of the RNA Helicase, eIF4A. Cell Reports, 15(11), 2340–2347. https://doi.org/10.1016/j.celrep.2016.05.005
Cifuente, J. O., & Moratorio, G. (2019). Evolutionary and Structural Overview of Human Picornavirus Capsid Antibody Evasion. Frontiers in Cellular and Infection Microbiology, 9. https://doi.org/10.3389/fcimb.2019.00283
Denys, A. (2011). Antiviral drugs. Polski Merkuriusz Lekarski, 30(179), 359–361. https://pubmed.ncbi.nlm.nih.gov/21675143/
Elgner, F., Sabino, C., Basic, M., Ploen, D., Grünweller, A., & Hildt, E. (2018). Inhibition of zika virus replication by silvestrol. Viruses, 10(4). https://doi.org/10.3390/v10040149
Getts, D. R., Chastain, E. M. L., Terry, R. L., & Miller, S. D. (2013). Virus infection, antiviral immunity, and autoimmunity. In Immunological Reviews (Vol. 255, Issue 1, pp. 197–209). John Wiley & Sons, Ltd. https://doi.org/10.1111/imr.12091
Glitscher, M., Himmelsbach, K., Woytinek, K., Johne, R., Reuter, A., Spiric, J., Schwaben, L., Grünweller, A., & Hildt, E. (2018). Inhibition of hepatitis E virus spread by the natural compound silvestrol. Viruses, 10(6). https://doi.org/10.3390/v10060301
Günther, S., & Lenz, O. (2004). Lassa virus. Critical Reviews in Clinical Laboratory Sciences, 41(4), 339–390. https://doi.org/10.1080/10408360490497456
Hawman, D. W., & Feldmann, H. (2018). Recent advances in understanding crimean-congo hemorrhagic fever virus [version 1; peer review: 4 approved]. F1000Research, 7. https://doi.org/10.12688/F1000RESEARCH.16189.1
Henss, L., Scholz, T., Grünweller, A., & Schnierle, B. S. (2018). Silvestrol inhibits chikungunya virus replication. Viruses, 10(11). https://doi.org/10.3390/v10110592
Hutchinson, E. C. (2018). Influenza Virus. Trends in Microbiology, 26(9), 809–810. https://doi.org/10.1016/j.tim.2018.05.013
Jadav, S., Kumar, A., Ahsan, M., & Jayaprakash, V. (2015). Ebola Virus: Current and Future Perspectives. Infectious Disorders - Drug Targets, 15(1), 20–31. https://doi.org/10.2174/1871526515666150320162259
Ju, X., & Ding, Q. (2019). Hepatitis e virus assembly and release. Viruses, 11(6). https://doi.org/10.3390/v11060539
Kogure, T., Kinghorn, A. D., Yan, I., Bolon, B., Lucas, D. M., Grever, M. R., & Patel, T. (2013). Therapeutic Potential of the Translation Inhibitor Silvestrol in Hepatocellular Cancer. PLoS ONE, 8(9). https://doi.org/10.1371/journal.pone.0076136
Mani, J. S., Johnson, J. B., Steel, J. C., Broszczak, D. A., Neilsen, P. M., Walsh, K. B., & Naiker, M. (2020). Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Research, 284. https://doi.org/10.1016/j.virusres.2020.197989
Müller, C., Obermann, W., Schulte, F. W., Lange-Grünweller, K., Oestereich, L., Elgner, F., Glitscher, M., Hildt, E., Singh, K., Wendel, H. G., Hartmann, R. K., Ziebuhr, J., & Grünweller, A. (2020). Comparison of broad-spectrum antiviral activities of the synthetic rocaglate CR-31-B (−) and the eIF4A-inhibitor Silvestrol. Antiviral Research, 175, 104706. https://doi.org/10.1016/j.antiviral.2020.104706
Müller, C., Schulte, F. W., Lange-Grünweller, K., Obermann, W., Madhugiri, R., Pleschka, S., Ziebuhr, J., Hartmann, R. K., & Grünweller, A. (2018). Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Research, 150, 123–129. https://doi.org/10.1016/j.antiviral.2017.12.010
Pan, L., Woodard, J. L., Lucas, D. M., Fuchs, J. R., & Douglas Kinghorn, A. (2014). Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. Natural Product Reports, 31(7), 924–939. https://doi.org/10.1039/c4np00006d
Plotkin, S. (2014). History of vaccination. Proceedings of the National Academy of Sciences of the United States of America, 111(34), 12283–12287. https://doi.org/10.1073/pnas.1400472111
Plourde, A. R., & Bloch, E. M. (2016). A literature review of zika virus. Emerging Infectious Diseases, 22(7), 1185–1192. https://doi.org/10.3201/eid2207.151990
Saiz, J. C., Sobrino, F., Sevilla, N., Martín, V., Perales, C., & Domingo, E. (2013). Molecular and Evolutionary Mechanisms of Viral Emergence. Viral Infections and Global Change, 297–325. https://doi.org/10.1002/9781118297469.ch16
Slaine, P. D., Kleer, M., Smith, N. K., Khaperskyy, D. A., & McCormick, C. (2017). Stress granule-inducing eukaryotic translation initiation factor 4A inhibitors block influenza A virus replication. Viruses, 9(12). https://doi.org/10.3390/v9120388
Todt, D., Moeller, N., Praditya, D., Kinast, V., Friesland, M., Engelmann, M., Verhoye, L., Sayed, I. M., Behrendt, P., Dao Thi, V. L., Meuleman, P., & Steinmann, E. (2018). The natural compound silvestrol inhibits hepatitis E virus (HEV) replication in vitro and in vivo. Antiviral Research, 157, 151–158. https://doi.org/10.1016/j.antiviral.2018.07.010
Vilas Boas, L. C. P., Campos, M. L., Berlanda, R. L. A., de Carvalho Neves, N., & Franco, O. L. (2019). Antiviral peptides as promising therapeutic drugs. Cellular and Molecular Life Sciences, 76(18), 3525–3542. https://doi.org/10.1007/s00018-019-03138-w
Wahid, B., Ali, A., Rafique, S., & Idrees, M. (2017). Global expansion of chikungunya virus: mapping the 64-year history. International Journal of Infectious Diseases, 58, 69–76. https://doi.org/10.1016/j.ijid.2017.03.006