Silvestrol as a broad-spectrum antiviral agent
DOI:
https://doi.org/10.33936/rev_bas_de_la_ciencia.v6i2.2814Keywords:
agente antiviral, silvestrol, virus, antiviral agents, silvestrol, virus.Abstract
Viral diseases are a major cause of morbidity and mortality worldwide because some viruses have high mutation rates, develop strategies to evade the host immune system and generate mechanisms of resistance to various antiviral agents. In addition to this problem, there are sudden outbreaks of emerging viruses, many of which lack effective treatments or vaccines. Therefore, new antiviral agents of natural origin such as silvestrol are required to offer new treatment alternatives. The objective of this review was to make a critical analysis of the studies that contained information on the application of silvestrol as an antiviral agent against several pathogenic viruses. For this purpose, scientific publications were searched in four databases (Scopus, Medline, Web of Science and Cochrane Library), using descriptors such as: "silvestrol", "antiviral agent" and "virus" adjusting the search equation to each one of the bases. From the 70 articles retrieved, after applying the exclusion and inclusion criteria, 8 articles were selected in which an antiviral effect of silvestrol is reported by acting on the host RNA eIF4A helicase and inhibiting viral translation.
Downloads
References
Alachkar, H., Santhanam, R., Harb, J. G., Lucas, D. M., Oaks, J. J., Hickey, C. J., Pan, L., Kinghorn, A. D., Caligiuri, M. A., Perrotti, D., Byrd, J. C., Garzon, R., Grever, M. R., & Marcucci, G. (2013). Silvestrol exhibits significant in vivo and in vitro antileukemic activities and inhibits FLT3 and miR-155 expressions in acute myeloid leukemia. Journal of Hematology and Oncology, 6(1). https://doi.org/10.1186/1756-8722-6-21
Biedenkopf, N., Lange-Grünweller, K., Schulte, F. W., Weißer, A., Müller, C., Becker, D., Becker, S., Hartmann, R. K., & Grünweller, A. (2017). The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antiviral Research, 137, 76–81. https://doi.org/10.1016/j.antiviral.2016.11.011
Brian, D. A., & Baric, R. S. (2005). Coronavirus genome structure and replication. Current Topics in Microbiology and Immunology, 287, 1–30. https://doi.org/10.1007/3-540-26765-4_1
Cencic, R., Carrier, M., Galicia-Vázquez, G., Bordeleau, M.-E., Sukarieh, R., Bourdeau, A., Brem, B., Teodoro, J. G., Greger, H., Tremblay, M. L., Porco, J. A., & Pelletier, J. (2009). Antitumor Activity and Mechanism of Action of the Cyclopenta[b]benzofuran, Silvestrol. PLoS ONE, 4(4), e5223. https://doi.org/10.1371/journal.pone.0005223
Chu, J., Galicia-Vázquez, G., Cencic, R., Mills, J. R., Katigbak, A., Porco, J. A., & Pelletier, J. (2016). CRISPR-Mediated Drug-Target Validation Reveals Selective Pharmacological Inhibition of the RNA Helicase, eIF4A. Cell Reports, 15(11), 2340–2347. https://doi.org/10.1016/j.celrep.2016.05.005
Cifuente, J. O., & Moratorio, G. (2019). Evolutionary and Structural Overview of Human Picornavirus Capsid Antibody Evasion. Frontiers in Cellular and Infection Microbiology, 9. https://doi.org/10.3389/fcimb.2019.00283
Denys, A. (2011). Antiviral drugs. Polski Merkuriusz Lekarski, 30(179), 359–361. https://pubmed.ncbi.nlm.nih.gov/21675143/
Elgner, F., Sabino, C., Basic, M., Ploen, D., Grünweller, A., & Hildt, E. (2018). Inhibition of zika virus replication by silvestrol. Viruses, 10(4). https://doi.org/10.3390/v10040149
Getts, D. R., Chastain, E. M. L., Terry, R. L., & Miller, S. D. (2013). Virus infection, antiviral immunity, and autoimmunity. In Immunological Reviews (Vol. 255, Issue 1, pp. 197–209). John Wiley & Sons, Ltd. https://doi.org/10.1111/imr.12091
Glitscher, M., Himmelsbach, K., Woytinek, K., Johne, R., Reuter, A., Spiric, J., Schwaben, L., Grünweller, A., & Hildt, E. (2018). Inhibition of hepatitis E virus spread by the natural compound silvestrol. Viruses, 10(6). https://doi.org/10.3390/v10060301
Günther, S., & Lenz, O. (2004). Lassa virus. Critical Reviews in Clinical Laboratory Sciences, 41(4), 339–390. https://doi.org/10.1080/10408360490497456
Hawman, D. W., & Feldmann, H. (2018). Recent advances in understanding crimean-congo hemorrhagic fever virus [version 1; peer review: 4 approved]. F1000Research, 7. https://doi.org/10.12688/F1000RESEARCH.16189.1
Henss, L., Scholz, T., Grünweller, A., & Schnierle, B. S. (2018). Silvestrol inhibits chikungunya virus replication. Viruses, 10(11). https://doi.org/10.3390/v10110592
Hutchinson, E. C. (2018). Influenza Virus. Trends in Microbiology, 26(9), 809–810. https://doi.org/10.1016/j.tim.2018.05.013
Jadav, S., Kumar, A., Ahsan, M., & Jayaprakash, V. (2015). Ebola Virus: Current and Future Perspectives. Infectious Disorders - Drug Targets, 15(1), 20–31. https://doi.org/10.2174/1871526515666150320162259
Ju, X., & Ding, Q. (2019). Hepatitis e virus assembly and release. Viruses, 11(6). https://doi.org/10.3390/v11060539
Kogure, T., Kinghorn, A. D., Yan, I., Bolon, B., Lucas, D. M., Grever, M. R., & Patel, T. (2013). Therapeutic Potential of the Translation Inhibitor Silvestrol in Hepatocellular Cancer. PLoS ONE, 8(9). https://doi.org/10.1371/journal.pone.0076136
Mani, J. S., Johnson, J. B., Steel, J. C., Broszczak, D. A., Neilsen, P. M., Walsh, K. B., & Naiker, M. (2020). Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Research, 284. https://doi.org/10.1016/j.virusres.2020.197989
Müller, C., Obermann, W., Schulte, F. W., Lange-Grünweller, K., Oestereich, L., Elgner, F., Glitscher, M., Hildt, E., Singh, K., Wendel, H. G., Hartmann, R. K., Ziebuhr, J., & Grünweller, A. (2020). Comparison of broad-spectrum antiviral activities of the synthetic rocaglate CR-31-B (−) and the eIF4A-inhibitor Silvestrol. Antiviral Research, 175, 104706. https://doi.org/10.1016/j.antiviral.2020.104706
Müller, C., Schulte, F. W., Lange-Grünweller, K., Obermann, W., Madhugiri, R., Pleschka, S., Ziebuhr, J., Hartmann, R. K., & Grünweller, A. (2018). Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Research, 150, 123–129. https://doi.org/10.1016/j.antiviral.2017.12.010
Pan, L., Woodard, J. L., Lucas, D. M., Fuchs, J. R., & Douglas Kinghorn, A. (2014). Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. Natural Product Reports, 31(7), 924–939. https://doi.org/10.1039/c4np00006d
Plotkin, S. (2014). History of vaccination. Proceedings of the National Academy of Sciences of the United States of America, 111(34), 12283–12287. https://doi.org/10.1073/pnas.1400472111
Plourde, A. R., & Bloch, E. M. (2016). A literature review of zika virus. Emerging Infectious Diseases, 22(7), 1185–1192. https://doi.org/10.3201/eid2207.151990
Saiz, J. C., Sobrino, F., Sevilla, N., Martín, V., Perales, C., & Domingo, E. (2013). Molecular and Evolutionary Mechanisms of Viral Emergence. Viral Infections and Global Change, 297–325. https://doi.org/10.1002/9781118297469.ch16
Slaine, P. D., Kleer, M., Smith, N. K., Khaperskyy, D. A., & McCormick, C. (2017). Stress granule-inducing eukaryotic translation initiation factor 4A inhibitors block influenza A virus replication. Viruses, 9(12). https://doi.org/10.3390/v9120388
Todt, D., Moeller, N., Praditya, D., Kinast, V., Friesland, M., Engelmann, M., Verhoye, L., Sayed, I. M., Behrendt, P., Dao Thi, V. L., Meuleman, P., & Steinmann, E. (2018). The natural compound silvestrol inhibits hepatitis E virus (HEV) replication in vitro and in vivo. Antiviral Research, 157, 151–158. https://doi.org/10.1016/j.antiviral.2018.07.010
Vilas Boas, L. C. P., Campos, M. L., Berlanda, R. L. A., de Carvalho Neves, N., & Franco, O. L. (2019). Antiviral peptides as promising therapeutic drugs. Cellular and Molecular Life Sciences, 76(18), 3525–3542. https://doi.org/10.1007/s00018-019-03138-w
Wahid, B., Ali, A., Rafique, S., & Idrees, M. (2017). Global expansion of chikungunya virus: mapping the 64-year history. International Journal of Infectious Diseases, 58, 69–76. https://doi.org/10.1016/j.ijid.2017.03.006