Plantas medicinales de la Amazonía ecuatoriana con actividad antibacteriana: una revisión sistemática
DOI:
https://doi.org/10.33936/revbasdelaciencia.v8i3.6708Palabras clave:
Etnofarmacología, productos naturales, fitoquímicos, resistencia bacteriana, actividades biológicas.Resumen
La creciente resistencia bacteriana a los antibióticos comerciales resalta la necesidad de descubrir nuevos agentes antimicrobianos. Las plantas medicinales de la Amazonía ecuatoriana, con sus diversas moléculas bioactivas, representan una fuente prometedora de compuestos que podrían enfrentar esta problemática. El presente trabajo tuvo como objetivo analizar la información científica publicada sobre plantas medicinales de la región amazónica ecuatoriana con propiedades antibacterianas durante el período 2014-2024 a través de una revisión sistemática. Se realizó una búsqueda avanzada en las bases PudMed, Science Direct y Red de Repositorio de Acesso Abierto del Ecuador, siguiendo las directrices PRISMA (por sus siglas en inglés, Preferred Reporting Items for Systematic reviews and Meta-Analyses) para el tamizaje de los artículos. Se identificaron nueve artículos que reportan 12 familias botánicas divididas en 18 especies recolectadas en las provincias de Pastaza, Morona Santiago, Zamora Chinchipe y Sucumbios. Los aceites esenciales de Piper augustum, Piper leticianum y Hedychium coronarium resultaron ser los extractos más bioactivos en está revisión presentaron una concentración mínima inhbitoria de 0,18 mg/mL frente a Streptococcus mutans. Los compuestos activos incluyen terpenos, alcaloides y compuestos fenólicos, destacando la compleja química de estas plantas, la cual contribuye a su potente actividad antimicrobiana. Esta revisión sistemática resalta el potencial prometedor de las plantas medicinales amazónicas como fuentes de compuestos antibacterianos. Es necesario seguir investigando para caracterizar completamenta las propiedades antimicrobianas de estas plantas, así como para comprender sus mecanismos de acción y su aplicación clínica.
Descargas
Citas
Acosta, K., Jiménez, A., Vinueza, D., Pilco, G., & Abdo, S. (2017). Evaluación in vitro de las actividades antibacteriana y antidermatófica del extracto alcaloidal del látex de Brosimum utile (Kunth) Pittier. Perfiles Revista Cientifíca, 18(2), 82–89.
Alibi, S., Crespo, D., & Navas, J. (2021). Plant-derivatives small molecules with antibacterial activity. Antibiotics, 10(3). https://doi.org/10.3390/antibiotics10030231
Altuntaş, Ü., Güzel, İ., & Özçelik, B. (2023). Phenolic Constituents, Antioxidant and Antimicrobial Activity and Clustering Analysis of Propolis Samples Based on PCA from Different Regions of Anatolia. Molecules, 28(3). https://doi.org/10.3390/molecules28031121
Alu’datt, M. H., Rababah, T., Alhamad, M. N., Al-Mahasneh, M. A., Almajwal, A., Gammoh, S., Ereifej, K., Johargy, A., & Alli, I. (2017). A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds. En Food Chemistry (Vol. 218). https://doi.org/10.1016/j.foodchem.2016.09.057
Álvarez-Martínez, F. J., Barrajón- Catalán, E., Herranz-López, M., & Micol, V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. En Phytomedicine (Vol. 90). https://doi.org/10.1016/j.phymed.2021.153626
Bai, J., Li, J., Chen, Z., Bai, X., Yang, Z., Wang, Z., & Yang, Y. (2023). Antibacterial activity and mechanism of clove essential oil against foodborne pathogens. LWT, 173. https://doi.org/10.1016/j.lwt.2022.114249
Barbuddhe, S. B., & Chakraborty, T. (2009). Listeria as an enteroinvasive gastrointestinal pathogen. En Current Topics in Microbiology and Immunology (Vol. 337, Número 1). https://doi.org/10.1007/978-3-642-01846-6_6
Bataineh, S. M. B., Tarazi, Y. H., & Ahmad, W. A. (2021). Antibacterial efficacy of some medicinal plants on multidrug resistance bacteria and their toxicity on eukaryotic cells. Applied Sciences (Switzerland), 11(18). https://doi.org/10.3390/app11188479
Ben Yakoub, A. R., Abdehedi, O., Jridi, M., Elfalleh, W., Nasri, M., & Ferchichi, A. (2018). Flavonoids, phenols, antioxidant, and antimicrobial activities in various extracts from Tossa jute leave (Corchorus olitorus L.). Industrial Crops and Products, 118. https://doi.org/10.1016/j.indcrop.2018.03.047
Bolouri, P., Salami, R., Kouhi, S., Kordi, M., Asgari Lajayer, B., Hadian, J., & Astatkie, T. (2022). Applications of Essential Oils and Plant Extracts in Different Industries. En Molecules (Vol. 27, Número 24). https://doi.org/10.3390/molecules27248999
Boncan, D., Tsang, S., Li, C., Lee, I., Lam, H., Chan, T., & Hui, J. (2020). Terpenes and terpenoids in plants: Interactions with environment and insects. En International Journal of Molecular Sciences (Vol. 21, N. 19). https://doi.org/10.3390/ijms21197382
Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance, 19(4). https://doi.org/10.1089/mdr.2012.0244
Chandra, H., Bishnoi, P., Yadav, A., Patni, B., Mishra, A. P., & Nautiyal, A. R. (2017). Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials - A review. Plants (Vol. 6, N. 2). https://doi.org/10.3390/plants6020016
Chang, D., Sharma, L., De la Cruz, C. S., & Zhang, D. (2021). Clinical Epidemiology, Risk Factors, and Control Strategies of Klebsiella pneumoniae Infection. En Frontiers in Microbiology (Vol. 12). https://doi.org/10.3389/fmicb.2021.750662
Christianson, D. W. (2017). Structural and Chemical Biology of Terpenoid Cyclases. En Chemical Reviews (Vol. 117, Número 17). https://doi.org/10.1021/acs.chemrev.7b00287
de la Torre, L., H. Navarrete, P. Muriel M., M.J. Macía &H. Balslev (eds.). 2008. Enciclopedia de las Plantas Útiles del Ecuador. Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador & Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus. Quito & Aarhus
Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. En Phytochemistry Reviews (Vol. 18, Número 1). https://doi.org/10.1007/s11101-018-9591-z
Guerrini, A., Tacchini, M., Chiocchio, I., Grandini, A., Radice, M., Maresca, I., Paganetto, G., & Sacchetti, G. (2023). A Comparative Study on Chemical Compositions and Biological Activities of Four Amazonian Ecuador Essential Oils: Curcuma longa L. (Zingiberaceae), Cymbopogon citratus (DC.) Stapf, (Poaceae), Ocimum campechianum Mill. (Lamiaceae), and Zingiber officinale Roscoe (Zingiberaceae). Antibiotics, 12(1). https://doi.org/10.3390/antibiotics12010177
Han, Y., Sun, Z., & Chen, W. (2020). Antimicrobial susceptibility and antibacterial mechanism of limonene against listeria monocytogenes. Molecules, 25(1). https://doi.org/10.3390/molecules25010033
Haq, I. U., Imran, M., Nadeem, M., Tufail, T., Gondal, T. A., & Mubarak, M. S. (2021). Piperine: A review of its biological effects.En Phytotherapy Research (Vol. 35, Número 2). https://doi.org/10.1002/ptr.6855
Hoch, C. C., Petry, J., Griesbaum, L., Weiser, T., Werner, K., Ploch, M., Verschoor, A., Multhoff, G., Bashiri Dezfouli, A., & Wollenberg, B. (2023). 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. En Biomedicine and Pharmacotherapy (Vol. 167). https://doi.org/10.1016/j.biopha.2023.115467
Huang, A. C., & Osbourn, A. (2019). Plant terpenes that mediate below-ground interactions: prospects for bioengineering terpenoids for plant protection. En Pest Management Science (Vol. 75, Número 9). https://doi.org/10.1002/ps.5410
Hudault, J Guignot, & A L Servin. (2001). Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut, 49, 47–55. https://doi.org/https://doi.org/10.1136/gut.49.1.47
Jaime, L., Vázquez, E., Fornari, T., López‐Hazas, M. del C., García‐Risco, M. R., Santoyo, S., & Reglero, G. (2015). Extraction of functional ingredients from spinach ( Spinacia oleracea L.) using liquid solvent and supercritical CO 2 extraction. Journal of the Science of Food and Agriculture, 95(4), 722–729. https://doi.org/10.1002/jsfa.6788
Jang, H. I., Rhee, K. J., & Eom, Y. Bin. (2020). Antibacterial and antibiofilm effects of α-humulene against Bacteroides fragilis. Canadian Journal of Microbiology, 66(6). https://doi.org/10.1139/cjm-2020-0004
Kong, J. M., Goh, N. K., Chia, L. S., & Chia, T. F. (2003). Recent advances in traditional plant drugs and orchids. En Acta Pharmacologica Sinica (Vol. 24, Número 1).
Kovač, J., Šimunović, K., Wu, Z., Klančnik, A., Bucar, F., Zhang, Q., & Možina, S. S. (2015). Antibiotic resistance modulation and modes of action of (-)-α-Pinene in Campylobacter jejuni. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0122871
Li Yan, & Xiaoying Zhou. (2020). Study on in vitro Anti-bacterial Activity and Mechanism of Ellagic Acid on Streptococcus mutans. China Pharmacy , 12, 607–611. https://pesquisa.bvsalud.org/portal/resource/pt/wpr-817319
Li, L., Shi, C., Yin, Z., Jia, R., Peng, L., Kang, S., & Li, Z. (2014). Antibacterial activity of α-terpineol may induce morphostructural alterations in Escherichia coli. Brazilian Journal of Microbiology, 45(4). https://doi.org/10.1590/S1517-83822014000400035
Liu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W., & Chen, W. (2020). Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis, 141. https://doi.org/10.1016/j.micpath.2020.103980
Lowy, F. D. (1998). Staphylococcus aureus Infections. New England Journal of Medicine, 339(8), 520–532. https://doi.org/10.1056/NEJM199808203390806
Manilal, A., Sabu, K., Tsefaye, A., Teshome, T., Aklilu, A., Seid, M., Kayta, G., Ayele, A., & Idhayadhulla, A. (2023). Antibacterial Activity Against Multidrug-Resistant Clinical Isolates of Nine Plants from Chencha, Southern Ethiopia. Infection and Drug Resistance, 16. https://doi.org/10.2147/IDR.S402244
Masyita, A., Mustika Sari, R., Dwi Astuti, A., Yasir, B., Rahma Rumata, N., Emran, T. Bin, Nainu, F., & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry: X, 13. https://doi.org/10.1016/j.fochx.2022.100217
Miller, W. R., Munita, J. M., & Arias, C. A. (2014). Mechanisms of antibiotic resistance in enterococci. En Expert Review of Anti-Infective Therapy (Vol. 12, Número 10). https://doi.org/10.1586/14787210.2014.956092
Molins Correa, F., & Serrano Rosa, M. A. (2019). Bases neurales de la aversión a las pérdidas en contextos económicos: revisión sistemática según las directrices PRISMA. Revista de Neurología, 68(02). https://doi.org/10.33588/rn.6802.2018276
Moo, C., Yang, S., Osman, M., Yuswan, M., Loh, J., Lim, W., Lim, S., & Lai, K. (2020). Antibacterial activity and mode of action of β-caryophyllene on Bacillus cereus. Polish Journal of Microbiology, 69(1). https://doi.org/10.33073/pjm-2020-007
Moreno M, C., González E, R., & Beltrán, C. (2009). Mecanismos de resistencia antimicrobiana en patógenos respiratorios. Revista de otorrinolaringología y cirugía de cabeza y cuello, 69(2). https://doi.org/10.4067/s0718-48162009000200014
Noriega, P., Calderón, L., Ojeda, A., & Paredes, E. (2023). Chemical Composition, Antimicrobial and Antioxidant Bioautography Activity of Essential Oil from Leaves of Amazon Plant Clinopodium brownei (Sw.). Molecules, 28(4). https://doi.org/10.3390/molecules28041741
Noriega, P., Mosquera, T., Abad, J., Cabezas, D., Piedra, S., Coronel, I., Maldonado, M. E., Bardiserotto, A., Vertuani, S., & Manfredini, S. (2016). Composición química, actividad antioxidante y antimicrobiana del aceite esencial proveniente de las hojas de Piper pubinervulum C. DC Piperaceae. La Granja, 24(2). https://doi.org/10.17163/lgr.n24.2016.08
Oyedemi, S. O., Okoh, A. I., Mabinya, L. V., Pirochenva, G., & Afolayan, A. J. (2009). The proposed mechanism of bactericidal action of eugenol, A-terpineol and Y-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. African Journal of Biotechnology, 8(7).
Pastuña-Fasso, J. V, Espinosa de los Monteros-Silva, N., Joel, E., Daniel Quiroz-Moreno, C., Sosa-Pozo, G., Proaño-Bolaños, C., Radice, M., Niño-Ruíz, Z., & Mogollón, N. G. (2024). Untargeted Characterization and Biological Activity of Amazonian Aqueous Stem Bark Extracts by Liquid and Gas Chromatography- Mass Spectrometry. https://ssrn.com/abstract=4726964
Pazmiño, A., Campuzano, A., Marín, K.(2020). Inhibición del crecimiento de Salmonella spp y Staphylococcus aureus por efecto del aceite esencial de orégano en una película biodegradable activa de ácido poliláctico. Revista Bases de la Ciencia, 5(1), 41-50. DOI: 10.33936/rev_bas_de_la_ciencia.v5i1.2035
Peng, L. Y., Yuan, M., Cui, Z. Q., Wu, Z. M., Yu, Z. J., Song, K., Tang, B., & Fu, B. D. (2018). Rutin inhibits quorum sensing, biofilm formation and virulence genes in avian pathogenic Escherichia coli. Microbial Pathogenesis, 119. https://doi.org/10.1016/j.micpath.2018.04.007
Peterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9(Nov). https://doi.org/10.3389/fmicb.2018.02928
Power, J. T., & Calder, M. A. (1983). Pathogenic significance of Klebsiella oxytoca in acute respiratory tract infection. Thorax, 38(3). https://doi.org/10.1136/thx.38.3.205
Qian, W., Yang, M., Wang, T., Sun, Z., Liu, M., Zhang, J., Zeng, Q., Cai, C., & Li, Y. (2020). Antibacterial Mechanism of Vanillic Acid on Physiological, Morphological, and Biofilm Properties of Carbapenem-Resistant Enterobacter hormaechei. Journal of Food Protection, 83(4), 576–583. https://doi.org/10.4315/JFP-19-469
Raad Salh, A., Hashim Risan, M., & Majeed Jasim, H. (2022). Biochemical Characteristics and Antibiotics Susceptibility of Streptococcus Mutans Isolates from Dental Caries in Baghdad City. International Journal of Advanced Biological and Biomedical Research, 10(1).
Rath, S., & Padhy, R. N. (2015). Surveillance of acute community acquired urinary tract bacterial infections. Journal of Acute Disease, 4(3). https://doi.org/10.1016/j.joad.2015.06.001
Rawat, J., Pandey, S., Rawat, B., Rai, N., Preeti, P., Thakur, A., Butola, J., & Bachheti, R. (2023). Traditional Uses, Active Ingredients, and Biological Activities of Paris polyphylla Smith: A Comprehensive Review of an Important Himalayan Medicinal Plant. En Journal of Chemistry (Vol. 2023). https://doi.org/10.1155/2023/7947224
Ruíz, E., Moreira, Juan. Metabolitos secundarios en plantas medicinales usadas para problemas gastrointestinales. una revisión sobre medicina ancestral ecuatoriana. Revistas Bases de la Ciencia; 2(3), pp. 1-16. https://doi.org/10.33936/rev_bas_de_la_ciencia.v2i3.1036
Smilkov, K., Ackova, D. G., Cvetkovski, A., Ruskovska, T., Vidovic, B., & Atalay, M. (2019). Piperine: Old Spice and New Nutraceutical? Current Pharmaceutical Design, 25(15). https://doi.org/10.2174/1381612825666190701150803
Srivastava, R. P., Kumar, S., Singh, L., Madhukar, M., Singh, N., Saxena, G., Pandey, S., Singh, A., Devkota, H. P., Verma, P. C., Shiva, S., Malik, S., & Rustagi, S. (2023). Major phenolic compounds, antioxidant, antimicrobial, and cytotoxic activities of Selinum carvifolia (L.) collected from different altitudes in India. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1180225
Valarezo, E., Ojeda-Riascos, S., Cartuche, L., Andrade-González, N., González-Sánchez, I., & Meneses, M. A. (2020). Extraction and study of the essential oil of copal (Dacryodes peruviana), an amazonian fruit with the highest yield worldwide. Plants, 9(12). https://doi.org/10.3390/plants9121658
Valarezo, E., Rosales-Acevedo, V., Ojeda-Riascos, S., & Meneses, M. A. (2021). Phytochemical Profile, Antimicrobial and Antioxidant Activities of Essential Oil from the Leaves of Native Amazonian Species of Ecuador Sarcorhachis sydowii Trel. Journal of Essential Oil-Bearing Plants, 24(2). https://doi.org/10.1080/0972060X.2021.1927853
Villacís-Chiriboga, J., García-Ruiz, A., Baenas, N., Moreno, D., Meléndez-Martínez, A., Stinco, C. M, Jerves-Andrade, L., León-Tamariz, F., Ortiz-Ulloa, J., & Ruales, J. (2018). Changes in phytochemical composition, bioactivity and in vitro digestibility of guayusa leaves (Ilex guayusa Loes.) in different ripening stages. Journal of the Science of Food and Agriculture, 98(5). https://doi.org/10.1002/jsfa.8675
Vuong, C., & Otto, M. (2002). Staphylococcus epidermidis infections. En Microbes and Infection (Vol. 4, Número 4). https://doi.org/10.1016/S1286-4579(02)01563-0
Wu, M., Tian, L., Fu, J., Liao, S., Li, H., Gai, Z., & Gong, G. (2022). Antibacterial mechanism of Protocatechuic acid against Yersinia enterocolitica and its application in pork. Food Control, 133. https://doi.org/10.1016/j.foodcont.2021.108573
Zhang, Y., Cai, P., Cheng, G., & Zhang, Y. (2022). A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. En Natural Product Communications (Vol. 17, Número 1). https://doi.org/10.1177/1934578X211069721
Zhang, Y., Feng, R., Li, L., Zhou, X., Li, Z., Jia, R., Song, X., Zou, Y., Yin, L., He, C., Liang, X., Zhou, W., Wei, Q., Du, Y., Yan, K., Wu, Z., & Yin, Z. (2018). The Antibacterial Mechanism of Terpinen-4-ol Against Streptococcus agalactiae. Current Microbiology, 75(9). https://doi.org/10.1007/s00284-018-1512-2
Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M. R. U., Zhao, H., & Huang, L. (2020). Antibacterial Mechanism of Curcumin: A Review. En Chemistry and Biodiversity (Vol. 17, Número 8). https://doi.org/10.1002/cbdv.202000171
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Cristian Sillagana Verdezoto

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.