Plantas medicinales de la Amazonía ecuatoriana con actividad antibacteriana: una revisión sistemática

Authors

DOI:

https://doi.org/10.33936/revbasdelaciencia.v8i3.6708

Keywords:

Ethnobotany, pharmacological properties, phytochemicals, antibacterial resistance

Abstract

The increasing bacterial resistance to commercial antibiotics underscores the urgent need to discover new antimicrobial agents. Medicinal plants from the Ecuadorian Amazon, with their diverse bioactive molecules, represent a promising source of compounds that could address this issue. This study aimed to analyze the scientific information published on medicinal plants in the Ecuadorian Amazon with antibacterial properties during the period 2014-2024 through a systematic review. An advanced search was conducted in the PubMed, Science Direct, and rraae databases, following the PRISMA guidelines for article screening. Nine articles published between 2014 and 2024 addressing the antibacterial potential of medicinal plants from the Ecuadorian Amazon were identified. Among the evaluated extracts, alkaloids from the latex of Brosimum utile showed the highest activity with a MIC of 1.6 mg/mL against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, while the essential oils of Piper augustum, Piper leticianum, and Hedychium coronarium exhibited a MIC of 0.18 mg/mL against Streptococcus mutans. The most active compounds include terpenes, alkaloids, and phenolic compounds, highlighting the complex chemistry of these plants, which contributes to their potent antimicrobial activity. In conclusion, this systematic review highlights the promising potential of Ecuadorian Amazonian medicinal plants as sources of antibacterial compounds. However, further research is needed to fully characterize the antimicrobial properties of these plants, as well as to better understand their mechanisms of action and potential clinical applications.

Downloads

Download data is not yet available.

References

Acosta, K., Jiménez, A., Vinueza, D., Pilco, G., & Abdo, S. (2017). Evaluación in vitro de las actividades antibacteriana y antidermatófica del extracto alcaloidal del látex de Brosimum utile (Kunth) Pittier. Perfiles Revista Cientifíca, 18(2), 82–89.

Alibi, S., Crespo, D., & Navas, J. (2021). Plant-derivatives small molecules with antibacterial activity. Antibiotics, 10(3). https://doi.org/10.3390/antibiotics10030231

Altuntaş, Ü., Güzel, İ., & Özçelik, B. (2023). Phenolic Constituents, Antioxidant and Antimicrobial Activity and Clustering Analysis of Propolis Samples Based on PCA from Different Regions of Anatolia. Molecules, 28(3). https://doi.org/10.3390/molecules28031121

Alu’datt, M. H., Rababah, T., Alhamad, M. N., Al-Mahasneh, M. A., Almajwal, A., Gammoh, S., Ereifej, K., Johargy, A., & Alli, I. (2017). A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds. En Food Chemistry (Vol. 218). https://doi.org/10.1016/j.foodchem.2016.09.057

Álvarez-Martínez, F. J., Barrajón- Catalán, E., Herranz-López, M., & Micol, V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. En Phytomedicine (Vol. 90). https://doi.org/10.1016/j.phymed.2021.153626

Bai, J., Li, J., Chen, Z., Bai, X., Yang, Z., Wang, Z., & Yang, Y. (2023). Antibacterial activity and mechanism of clove essential oil against foodborne pathogens. LWT, 173. https://doi.org/10.1016/j.lwt.2022.114249

Barbuddhe, S. B., & Chakraborty, T. (2009). Listeria as an enteroinvasive gastrointestinal pathogen. En Current Topics in Microbiology and Immunology (Vol. 337, Número 1). https://doi.org/10.1007/978-3-642-01846-6_6

Bataineh, S. M. B., Tarazi, Y. H., & Ahmad, W. A. (2021). Antibacterial efficacy of some medicinal plants on multidrug resistance bacteria and their toxicity on eukaryotic cells. Applied Sciences (Switzerland), 11(18). https://doi.org/10.3390/app11188479

Ben Yakoub, A. R., Abdehedi, O., Jridi, M., Elfalleh, W., Nasri, M., & Ferchichi, A. (2018). Flavonoids, phenols, antioxidant, and antimicrobial activities in various extracts from Tossa jute leave (Corchorus olitorus L.). Industrial Crops and Products, 118. https://doi.org/10.1016/j.indcrop.2018.03.047

Bolouri, P., Salami, R., Kouhi, S., Kordi, M., Asgari Lajayer, B., Hadian, J., & Astatkie, T. (2022). Applications of Essential Oils and Plant Extracts in Different Industries. En Molecules (Vol. 27, Número 24). https://doi.org/10.3390/molecules27248999

Boncan, D., Tsang, S., Li, C., Lee, I., Lam, H., Chan, T., & Hui, J. (2020). Terpenes and terpenoids in plants: Interactions with environment and insects. En International Journal of Molecular Sciences (Vol. 21, N. 19). https://doi.org/10.3390/ijms21197382

Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance, 19(4). https://doi.org/10.1089/mdr.2012.0244

Chandra, H., Bishnoi, P., Yadav, A., Patni, B., Mishra, A. P., & Nautiyal, A. R. (2017). Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials - A review. Plants (Vol. 6, N. 2). https://doi.org/10.3390/plants6020016

Chang, D., Sharma, L., De la Cruz, C. S., & Zhang, D. (2021). Clinical Epidemiology, Risk Factors, and Control Strategies of Klebsiella pneumoniae Infection. En Frontiers in Microbiology (Vol. 12). https://doi.org/10.3389/fmicb.2021.750662

Christianson, D. W. (2017). Structural and Chemical Biology of Terpenoid Cyclases. En Chemical Reviews (Vol. 117, Número 17). https://doi.org/10.1021/acs.chemrev.7b00287

de la Torre, L., H. Navarrete, P. Muriel M., M.J. Macía &H. Balslev (eds.). 2008. Enciclopedia de las Plantas Útiles del Ecuador. Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador & Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus. Quito & Aarhus

Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. En Phytochemistry Reviews (Vol. 18, Número 1). https://doi.org/10.1007/s11101-018-9591-z

Guerrini, A., Tacchini, M., Chiocchio, I., Grandini, A., Radice, M., Maresca, I., Paganetto, G., & Sacchetti, G. (2023). A Comparative Study on Chemical Compositions and Biological Activities of Four Amazonian Ecuador Essential Oils: Curcuma longa L. (Zingiberaceae), Cymbopogon citratus (DC.) Stapf, (Poaceae), Ocimum campechianum Mill. (Lamiaceae), and Zingiber officinale Roscoe (Zingiberaceae). Antibiotics, 12(1). https://doi.org/10.3390/antibiotics12010177

Han, Y., Sun, Z., & Chen, W. (2020). Antimicrobial susceptibility and antibacterial mechanism of limonene against listeria monocytogenes. Molecules, 25(1). https://doi.org/10.3390/molecules25010033

Haq, I. U., Imran, M., Nadeem, M., Tufail, T., Gondal, T. A., & Mubarak, M. S. (2021). Piperine: A review of its biological effects.En Phytotherapy Research (Vol. 35, Número 2). https://doi.org/10.1002/ptr.6855

Hoch, C. C., Petry, J., Griesbaum, L., Weiser, T., Werner, K., Ploch, M., Verschoor, A., Multhoff, G., Bashiri Dezfouli, A., & Wollenberg, B. (2023). 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. En Biomedicine and Pharmacotherapy (Vol. 167). https://doi.org/10.1016/j.biopha.2023.115467

Huang, A. C., & Osbourn, A. (2019). Plant terpenes that mediate below-ground interactions: prospects for bioengineering terpenoids for plant protection. En Pest Management Science (Vol. 75, Número 9). https://doi.org/10.1002/ps.5410

Hudault, J Guignot, & A L Servin. (2001). Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut, 49, 47–55. https://doi.org/https://doi.org/10.1136/gut.49.1.47

Jaime, L., Vázquez, E., Fornari, T., López‐Hazas, M. del C., García‐Risco, M. R., Santoyo, S., & Reglero, G. (2015). Extraction of functional ingredients from spinach ( Spinacia oleracea L.) using liquid solvent and supercritical CO 2 extraction. Journal of the Science of Food and Agriculture, 95(4), 722–729. https://doi.org/10.1002/jsfa.6788

Jang, H. I., Rhee, K. J., & Eom, Y. Bin. (2020). Antibacterial and antibiofilm effects of α-humulene against Bacteroides fragilis. Canadian Journal of Microbiology, 66(6). https://doi.org/10.1139/cjm-2020-0004

Kong, J. M., Goh, N. K., Chia, L. S., & Chia, T. F. (2003). Recent advances in traditional plant drugs and orchids. En Acta Pharmacologica Sinica (Vol. 24, Número 1).

Kovač, J., Šimunović, K., Wu, Z., Klančnik, A., Bucar, F., Zhang, Q., & Možina, S. S. (2015). Antibiotic resistance modulation and modes of action of (-)-α-Pinene in Campylobacter jejuni. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0122871

Li Yan, & Xiaoying Zhou. (2020). Study on in vitro Anti-bacterial Activity and Mechanism of Ellagic Acid on Streptococcus mutans. China Pharmacy , 12, 607–611. https://pesquisa.bvsalud.org/portal/resource/pt/wpr-817319

Li, L., Shi, C., Yin, Z., Jia, R., Peng, L., Kang, S., & Li, Z. (2014). Antibacterial activity of α-terpineol may induce morphostructural alterations in Escherichia coli. Brazilian Journal of Microbiology, 45(4). https://doi.org/10.1590/S1517-83822014000400035

Liu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W., & Chen, W. (2020). Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis, 141. https://doi.org/10.1016/j.micpath.2020.103980

Lowy, F. D. (1998). Staphylococcus aureus Infections. New England Journal of Medicine, 339(8), 520–532. https://doi.org/10.1056/NEJM199808203390806

Manilal, A., Sabu, K., Tsefaye, A., Teshome, T., Aklilu, A., Seid, M., Kayta, G., Ayele, A., & Idhayadhulla, A. (2023). Antibacterial Activity Against Multidrug-Resistant Clinical Isolates of Nine Plants from Chencha, Southern Ethiopia. Infection and Drug Resistance, 16. https://doi.org/10.2147/IDR.S402244

Masyita, A., Mustika Sari, R., Dwi Astuti, A., Yasir, B., Rahma Rumata, N., Emran, T. Bin, Nainu, F., & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry: X, 13. https://doi.org/10.1016/j.fochx.2022.100217

Miller, W. R., Munita, J. M., & Arias, C. A. (2014). Mechanisms of antibiotic resistance in enterococci. En Expert Review of Anti-Infective Therapy (Vol. 12, Número 10). https://doi.org/10.1586/14787210.2014.956092

Molins Correa, F., & Serrano Rosa, M. A. (2019). Bases neurales de la aversión a las pérdidas en contextos económicos: revisión sistemática según las directrices PRISMA. Revista de Neurología, 68(02). https://doi.org/10.33588/rn.6802.2018276

Moo, C., Yang, S., Osman, M., Yuswan, M., Loh, J., Lim, W., Lim, S., & Lai, K. (2020). Antibacterial activity and mode of action of β-caryophyllene on Bacillus cereus. Polish Journal of Microbiology, 69(1). https://doi.org/10.33073/pjm-2020-007

Moreno M, C., González E, R., & Beltrán, C. (2009). Mecanismos de resistencia antimicrobiana en patógenos respiratorios. Revista de otorrinolaringología y cirugía de cabeza y cuello, 69(2). https://doi.org/10.4067/s0718-48162009000200014

Noriega, P., Calderón, L., Ojeda, A., & Paredes, E. (2023). Chemical Composition, Antimicrobial and Antioxidant Bioautography Activity of Essential Oil from Leaves of Amazon Plant Clinopodium brownei (Sw.). Molecules, 28(4). https://doi.org/10.3390/molecules28041741

Noriega, P., Mosquera, T., Abad, J., Cabezas, D., Piedra, S., Coronel, I., Maldonado, M. E., Bardiserotto, A., Vertuani, S., & Manfredini, S. (2016). Composición química, actividad antioxidante y antimicrobiana del aceite esencial proveniente de las hojas de Piper pubinervulum C. DC Piperaceae. La Granja, 24(2). https://doi.org/10.17163/lgr.n24.2016.08

Oyedemi, S. O., Okoh, A. I., Mabinya, L. V., Pirochenva, G., & Afolayan, A. J. (2009). The proposed mechanism of bactericidal action of eugenol, A-terpineol and Y-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. African Journal of Biotechnology, 8(7).

Pastuña-Fasso, J. V, Espinosa de los Monteros-Silva, N., Joel, E., Daniel Quiroz-Moreno, C., Sosa-Pozo, G., Proaño-Bolaños, C., Radice, M., Niño-Ruíz, Z., & Mogollón, N. G. (2024). Untargeted Characterization and Biological Activity of Amazonian Aqueous Stem Bark Extracts by Liquid and Gas Chromatography- Mass Spectrometry. https://ssrn.com/abstract=4726964

Pazmiño, A., Campuzano, A., Marín, K.(2020). Inhibición del crecimiento de Salmonella spp y Staphylococcus aureus por efecto del aceite esencial de orégano en una película biodegradable activa de ácido poliláctico. Revista Bases de la Ciencia, 5(1), 41-50. DOI: 10.33936/rev_bas_de_la_ciencia.v5i1.2035

Peng, L. Y., Yuan, M., Cui, Z. Q., Wu, Z. M., Yu, Z. J., Song, K., Tang, B., & Fu, B. D. (2018). Rutin inhibits quorum sensing, biofilm formation and virulence genes in avian pathogenic Escherichia coli. Microbial Pathogenesis, 119. https://doi.org/10.1016/j.micpath.2018.04.007

Peterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9(Nov). https://doi.org/10.3389/fmicb.2018.02928

Power, J. T., & Calder, M. A. (1983). Pathogenic significance of Klebsiella oxytoca in acute respiratory tract infection. Thorax, 38(3). https://doi.org/10.1136/thx.38.3.205

Qian, W., Yang, M., Wang, T., Sun, Z., Liu, M., Zhang, J., Zeng, Q., Cai, C., & Li, Y. (2020). Antibacterial Mechanism of Vanillic Acid on Physiological, Morphological, and Biofilm Properties of Carbapenem-Resistant Enterobacter hormaechei. Journal of Food Protection, 83(4), 576–583. https://doi.org/10.4315/JFP-19-469

Raad Salh, A., Hashim Risan, M., & Majeed Jasim, H. (2022). Biochemical Characteristics and Antibiotics Susceptibility of Streptococcus Mutans Isolates from Dental Caries in Baghdad City. International Journal of Advanced Biological and Biomedical Research, 10(1).

Rath, S., & Padhy, R. N. (2015). Surveillance of acute community acquired urinary tract bacterial infections. Journal of Acute Disease, 4(3). https://doi.org/10.1016/j.joad.2015.06.001

Rawat, J., Pandey, S., Rawat, B., Rai, N., Preeti, P., Thakur, A., Butola, J., & Bachheti, R. (2023). Traditional Uses, Active Ingredients, and Biological Activities of Paris polyphylla Smith: A Comprehensive Review of an Important Himalayan Medicinal Plant. En Journal of Chemistry (Vol. 2023). https://doi.org/10.1155/2023/7947224

Ruíz, E., Moreira, Juan. Metabolitos secundarios en plantas medicinales usadas para problemas gastrointestinales. una revisión sobre medicina ancestral ecuatoriana. Revistas Bases de la Ciencia; 2(3), pp. 1-16. https://doi.org/10.33936/rev_bas_de_la_ciencia.v2i3.1036

Smilkov, K., Ackova, D. G., Cvetkovski, A., Ruskovska, T., Vidovic, B., & Atalay, M. (2019). Piperine: Old Spice and New Nutraceutical? Current Pharmaceutical Design, 25(15). https://doi.org/10.2174/1381612825666190701150803

Srivastava, R. P., Kumar, S., Singh, L., Madhukar, M., Singh, N., Saxena, G., Pandey, S., Singh, A., Devkota, H. P., Verma, P. C., Shiva, S., Malik, S., & Rustagi, S. (2023). Major phenolic compounds, antioxidant, antimicrobial, and cytotoxic activities of Selinum carvifolia (L.) collected from different altitudes in India. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1180225

Valarezo, E., Ojeda-Riascos, S., Cartuche, L., Andrade-González, N., González-Sánchez, I., & Meneses, M. A. (2020). Extraction and study of the essential oil of copal (Dacryodes peruviana), an amazonian fruit with the highest yield worldwide. Plants, 9(12). https://doi.org/10.3390/plants9121658

Valarezo, E., Rosales-Acevedo, V., Ojeda-Riascos, S., & Meneses, M. A. (2021). Phytochemical Profile, Antimicrobial and Antioxidant Activities of Essential Oil from the Leaves of Native Amazonian Species of Ecuador Sarcorhachis sydowii Trel. Journal of Essential Oil-Bearing Plants, 24(2). https://doi.org/10.1080/0972060X.2021.1927853

Villacís-Chiriboga, J., García-Ruiz, A., Baenas, N., Moreno, D., Meléndez-Martínez, A., Stinco, C. M, Jerves-Andrade, L., León-Tamariz, F., Ortiz-Ulloa, J., & Ruales, J. (2018). Changes in phytochemical composition, bioactivity and in vitro digestibility of guayusa leaves (Ilex guayusa Loes.) in different ripening stages. Journal of the Science of Food and Agriculture, 98(5). https://doi.org/10.1002/jsfa.8675

Vuong, C., & Otto, M. (2002). Staphylococcus epidermidis infections. En Microbes and Infection (Vol. 4, Número 4). https://doi.org/10.1016/S1286-4579(02)01563-0

Wu, M., Tian, L., Fu, J., Liao, S., Li, H., Gai, Z., & Gong, G. (2022). Antibacterial mechanism of Protocatechuic acid against Yersinia enterocolitica and its application in pork. Food Control, 133. https://doi.org/10.1016/j.foodcont.2021.108573

Zhang, Y., Cai, P., Cheng, G., & Zhang, Y. (2022). A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. En Natural Product Communications (Vol. 17, Número 1). https://doi.org/10.1177/1934578X211069721

Zhang, Y., Feng, R., Li, L., Zhou, X., Li, Z., Jia, R., Song, X., Zou, Y., Yin, L., He, C., Liang, X., Zhou, W., Wei, Q., Du, Y., Yan, K., Wu, Z., & Yin, Z. (2018). The Antibacterial Mechanism of Terpinen-4-ol Against Streptococcus agalactiae. Current Microbiology, 75(9). https://doi.org/10.1007/s00284-018-1512-2

Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M. R. U., Zhao, H., & Huang, L. (2020). Antibacterial Mechanism of Curcumin: A Review. En Chemistry and Biodiversity (Vol. 17, Número 8). https://doi.org/10.1002/cbdv.202000171

Published

2023-11-30

Issue

Section

Ciencias Químicas