Potencial uso terapéutico de las plantas medicinales y sus derivados frente a los coronavirus

Potential therapeutic use of medicinal plants and their derivatives against coronaviruses

Authors

  • Marco Orlando Fuel Herrera Universidad de Granada
  • Sandra Cangui Panchi Universidad Central del Ecuador

DOI:

https://doi.org/10.33936/rev_bas_de_la_ciencia.v5i3.2507

Keywords:

plantas medicinales, medicina tradicional, agentes antivirales, coronavirus, SARS-CoV, MERS-CoV, SARS-CoV-2

Abstract

  Las pandemias causadas por los coronavirus afectan a la población y han cobrado miles de vidas y pérdidas económicas en todo el mundo, hasta la presente fecha no hay medicamentos antivirales, vacunas o terapias con anticuerpos monoclonales clínicamente aprobados para tratar sus infecciones. Por otro lado, los compuestos derivados de plantas poseen una gran diversidad química que incluye actividad antiviral por lo que pueden tener utilidad como agentes terapéuticos contra las infecciones por coronavirus. El objetivo fue identificar las plantas medicinales y sus derivados que presentan actividad antiviral in vitro frente a infecciones por coronavirus para lo cual se llevó a cabo una revisión y análisis bibliométrico de las publicaciones científicas de cuatro bases de datos (Medline, Web of Sciense, Scopus y Cochrane Library). Se consideró como adecuado el uso de los descriptores: plantas medicinales, medicina tradicional, fitoquímicos, medicina a base de hierbas, coronavirus, SARS o MERS y se ajustó adecuadamente la ecuación en cada una de ellas. De los 1483 estudios recuperados, tras aplicar los criterios de inclusión y exclusión se seleccionaron 32 artículos, en la mayoría de los estudios se describió el efecto protector por parte de los extractos y sus derivados, destacándose los compuestos: ácido cafeico, xantoangelol B, isobavachalcona, psoralidina, hirsutenona, hirsutanonol, 3β-friedelanol, silvestrol, amentoflavona, ferruginol, savinin, ácido betulínico, urtica dioica, griffithsia, taraxerol, ácido clorogénico por sus propiedades para inhibir proteínas estructurales y de unión a los receptores del huésped, así como la inhibición de proteasas importantes en la división y replicación del virus.   Palabra clave: Plantas medicinales, medicina tradicional, agentes antivirales, coronavirus.   Abstract Pandemics caused by coronaviruses affect the population and have claimed thousands of lives and economic losses worldwide. To date, there are no antiviral drugs, vaccines, or monoclonal antibody therapies clinically approved to treat their infections. On the other hand, plant-derived compounds have a great chemical diversity that includes antiviral activity and therefore may be useful as therapeutic agents against coronavirus infections. The objective was to identify the medicinal plants and their derivatives that present antiviral activity in vitro against coronavirus infections. A bibliometric review and analysis of the scientific publications of four databases (Medline, Web of Science, Scopus, and Cochrane Library) was carried out, and the use of the descriptors was considered appropriate: medicinal plants, traditional medicine, phytochemicals, herbal medicine, coronavirus, SARS or MERS and the equation in each of them was adjusted accordingly. Of the 1483 studies retrieved, after applying the inclusion and exclusion criteria, 32 articles were selected. In most of the studies, the protective effect by the extracts and their derivatives was described, highlighting the compounds: caffeic acid, xanthoangelol B, isobavachalcone, psoralidin, hirsutenone, hirsutanonol, 3β-friedelanol, silvestrol, amentoflavone, ferruginol, savinin, betulinic acid, urtica dioica, griffithsia, taraxerol, chlorogenic acid for their properties to inhibit structural and host receptor binding proteins, as well as the inhibition of important proteases in virus division and replication.   Keywords: Medicinal plants, traditional medicine, acting antiviral agents, coronavirus.

 

Downloads

Download data is not yet available.

References

Aanouz, I., Belhassan, A., El-Khatabi, K., Lakhlifi, T., El-ldrissi, M., & Bouachrine, M. (2020). Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1758790
Al-Tawfiq, J. A., & Memish, Z. A. (2014). Middle East respiratory syndrome coronavirus: Epidemiology and disease control measures. Infection and Drug Resistance, 7, 281–287. https://doi.org/10.2147/IDR.S51283
Aldeghi, M., Heifetz, A., Bodkin, M. J., Knapp, S., & Biggin, P. C. (2016). Accurate calculation of the absolute free energy of binding for drug molecules. Chemical Science, 7(1), 207–218. https://doi.org/10.1039/c5sc02678d
Báez-Santos, Y. M., St. John, S. E., & Mesecar, A. D. (2015). The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Research, 115, 21–38. https://doi.org/10.1016/j.antiviral.2014.12.015
Burton, R. E., & Kebler, R. W. (1960). The “half-life” of some scientific and technical literatures. American Documentation, 11(1), 18–22. https://doi.org/10.1002/asi.5090110105
Capell, T., Twyman, R. M., Armario-Najera, V., Ma, J. K.-C., Schillberg, S., & Christou, P. (2020). Potential applications of plant biotechnology against SARS-CoV-2. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2020.04.009
Chang, F. R., Yen, C. T., Ei-Shazly, M., Lin, W. H., Yen, M. H., Lin, K. H., & Wu, Y. C. (2012). Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Natural Product Communications, 7(11), 1415–1417. https://doi.org/10.1177/1934578x1200701103
Cho, J. K., Curtis-Long, M. J., Lee, K. H., Kim, D. W., Ryu, H. W., Yuk, H. J., & Park, K. H. (2013). Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorganic and Medicinal Chemistry, 21(11), 3051–3057. https://doi.org/10.1016/j.bmc.2013.03.027
Daczkowski, C. M., Dzimianski, J. V., Clasman, J. R., Goodwin, O., Mesecar, A. D., & Pegan, S. D. (2017). Structural Insights into the Interaction of Coronavirus Papain-Like Proteases and Interferon-Stimulated Gene Product 15 from Different Species. Journal of Molecular Biology, 429(11), 1661–1683. https://doi.org/10.1016/j.jmb.2017.04.011
Dan, Y., & K.L, C. (2009). Study on the inhibitory action on CVB3 replication in vitro by the extracts from Selaginella moelledorfii Hieron. Chinese Journal of Hospital Pharmacy, 29, 349–352. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYZ200904004.htm
Faridi, U. (2018). Middle East respiratory syndrome coronavirus (MERS-CoV): Impact on Saudi Arabia, 2015. Saudi Journal of Biological Sciences, 25(7), 1402–1405. https://doi.org/10.1016/j.sjbs.2016.09.020
Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses: Methods and Protocols, 1282, 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
Gupta, M. K., Vemula, S., Donde, R., Gouda, G., Behera, L., & Vadde, R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 1. https://doi.org/10.1080/07391102.2020.1751300
Gurung, A. B., Ali, M. A., Lee, J., Farah, M. A., & Al-Anazi, K. M. (2020). Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sciences, 255, 117831. https://doi.org/10.1016/j.lfs.2020.117831
Gyebi, G. A., Ogunro, O. B., Adegunloye, A. P., Ogunyemi, O. M., & Afolabi, S. O. (2020). Potential Inhibitors of Coronavirus 3-Chymotrypsin-Like Protease (3CL pro ): An in silico screening of Alkaloids and Terpenoids from African medicinal plants. Journal of Biomolecular Structure and Dynamics, 1–19. https://doi.org/10.1080/07391102.2020.1764868
Hastantram Sampangi-Ramaiah, M., Vishwakarma, R., & Uma Shaanker, R. (2020). Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. CURRENT SCIENCE, 118(7), 1087–1092. http://sts.bioe.uic.edu/castp/index.html?3igg
Henss, L., Scholz, T., Grünweller, A., & Schnierle, B. S. (2018). Silvestrol inhibits chikungunya virus replication. Viruses, 10(11). https://doi.org/10.3390/v10110592
Ho, T. Y., Wu, S. L., Chen, J. C., Li, C. C., & Hsiang, C. Y. (2007). Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Research, 74(2), 92–101. https://doi.org/10.1016/j.antiviral.2006.04.014
Hong, E. H., Song, J. H., Kang, K. Bin, Sung, S. H., Ko, H. J., & Yang, H. (2015). Anti-influenza activity of betulinic acid from Zizyphus Jujuba on influenza A/PR/8 virus. Biomolecules and Therapeutics, 23(4), 345–349. https://doi.org/10.4062/biomolther.2015.019
Jiangning, G., Xinchu, W., Hou, W., Qinghua, L., & Kaishun, B. (2005). Antioxidants from a Chinese medicinal herb - Psoralea corylifolia L. Food Chemistry, 91(2), 287–292. https://doi.org/10.1016/j.foodchem.2004.04.029
Joshi, R. S., Jagdale, S. S., Bansode, S. B., Shankar, S. S., Tellis, M. B., Pandya, V. K., Chugh, A., Giri, A. P., & Kulkarni, M. J. (2020). Discovery of Potential Multi-Target-Directed Ligands by Targeting Host-specific SARS-CoV-2 Structurally Conserved Main Protease$. Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1760137
Kar, P., Sharma, N. R., Singh, B., Sen, A., & Roy, A. (2020). Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. Journal of Biomolecular Structure & Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1780947
Kim, D. E., Min, J. S., Jang, M. S., Lee, J. Y., Shin, Y. S., Park, C. M., Song, J. H., Kim, H. R., Kim, S., Jin, Y. H., & Kwon, S. (2019). Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus oc43 infection of mrc-5 human lung cells. Biomolecules, 9(11), 696. https://doi.org/10.3390/biom9110696
Kim, D. W., Seo, K. H., Curtis-Long, M. J., Oh, K. Y., Oh, J. W., Cho, J. K., Lee, K. H., & Park, K. H. (2014). Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(1), 59–63. https://doi.org/10.3109/14756366.2012.753591
Kumaki, Y., Wandersee, M. K., Smith, A. J., Zhou, Y., Simmons, G., Nelson, N. M., Bailey, K. W., Vest, Z. G., Li, J. K. K., Chan, P. K. S., Smee, D. F., & Barnard, D. L. (2011). Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Research, 90(1), 22–32. https://doi.org/10.1016/j.antiviral.2011.02.003
Kumar, A., Choudhir, G., Shukla, S. K., Sharma, M., Tyagi, P., Bhushan, A., & Rathore, M. (2020). Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1772112
Lee, C. (2019). Griffithsin, a highly potent broad-spectrum antiviral lectin from red algae: From discovery to clinical application. Marine Drugs, 17(10). https://doi.org/10.3390/md17100567
Lee, C. S., Jang, E. R., Kim, Y. J., Myung, S. C., Kim, W., & Lee, M. W. (2012). Diarylheptanoid hirsutenone enhances apoptotic effect of TRAIL on epithelial ovarian carcinoma cell lines via activation of death receptor and mitochondrial pathway. Investigational New Drugs, 30(2), 548–557. https://doi.org/10.1007/s10637-010-9601-5
Li, F., Song, X., Su, G., Wang, Y., Wang, Z., Jia, J., Qing, S., Huang, L., Wang, Y., Zheng, K., & Wang, Y. (2019). Amentoflavone inhibits HSV-1 and ACV-resistant strain infection by suppressing viral early infection. Viruses, 11(5). https://doi.org/10.3390/v11050466
Luk, H. K. H., Li, X., Fung, J., Lau, S. K. P., & Woo, P. C. Y. (2019). Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infection, Genetics and Evolution, 71, 21–30. https://doi.org/10.1016/j.meegid.2019.03.001
Maeda, T., Yoshinaka, Y., Yonemoto, Y., Higuchi, H., Kitabayashi, T., & Hattori, K. (2011). Anti SARS-CoV Activity of Extracts from Japanese Pepper (Zanthoxylum piperitum (L.) DC. f. inerme Makino). Horticultural Research (Japan), 10(2), 267–272. https://doi.org/10.2503/hrj.10.267
Millet, J. K., Séron, K., Labitt, R. N., Danneels, A., Palmer, K. E., Whittaker, G. R., Dubuisson, J., & Belouzard, S. (2016). Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Research, 133, 1–8. https://doi.org/10.1016/j.antiviral.2016.07.011
Miranda-Sapla, M. M., Tomiotto-Pellissier, F., Assolini, J. P., Carloto, A. C. M., Bortoleti, B. T. da S., Gonçalves, M. D., Tavares, E. R., Rodrigues, J. H. da S., Simão, A. N. C., Yamauchi, L. M., Nakamura, C. V., Verri, W. A., Costa, I. N., Conchon-Costa, I., & Pavanelli, W. R. (2019). trans-Chalcone modulates Leishmania amazonensis infection in vitro by Nrf2 overexpression affecting iron availability. European Journal of Pharmacology, 853, 275–288. https://doi.org/10.1016/j.ejphar.2019.03.049
Mizar, P., Arya, R., Kim, T., Cha, S., Ryu, K. S., Yeo, W. S., Bae, T., Kim, D. W., Park, K. H., Kim, K. K., & Lee, S. S. (2018). Total Synthesis of Xanthoangelol B and Its Various Fragments: Toward Inhibition of Virulence Factor Production of Staphylococcus aureus. Journal of Medicinal Chemistry, 61(23), 10473–10487. https://doi.org/10.1021/acs.jmedchem.8b01012
Müller, C., Schulte, F. W., Lange-Grünweller, K., Obermann, W., Madhugiri, R., Pleschka, S., Ziebuhr, J., Hartmann, R. K., & Grünweller, A. (2018). Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Research, 150, 123–129. https://doi.org/10.1016/j.antiviral.2017.12.010
O’Keefe, B. R., Giomarelli, B., Barnard, D. L., Shenoy, S. R., Chan, P. K. S., McMahon, J. B., Palmer, K. E., Barnett, B. W., Meyerholz, D. K., Wohlford-Lenane, C. L., & McCray, P. B. (2010). Broad-Spectrum In Vitro Activity and In Vivo Efficacy of the Antiviral Protein Griffithsin against Emerging Viruses of the Family Coronaviridae. Journal of Virology, 84(5), 2511–2521. https://doi.org/10.1128/jvi.02322-09
OMS. (2020, May 2). Nuevo coronavirus 2019. https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019?gclid=EAIaIQobChMI2dGa3LbI6QIVVbLVCh0xwwIvEAAYASAAEgI0OvD_BwE
Parasuraman, S., Thing, G. S., & Dhanaraj, S. A. (2014). Polyherbal formulation: Concept of ayurveda. Pharmacognosy Reviews, 8(16), 73–80. https://doi.org/10.4103/0973-7847.134229
Park, J.-Y., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, S.-J., Kim, D., Park, K. H., Lee, W. S., & Ryu, Y. B. (2012). Diarylheptanoids from Alnus japonica Inhibit Papain-Like Protease of Severe Acute Respiratory Syndrome Coronavirus. Biological and Pharmaceutical Bulletin, 35(11), 2036–2042. https://doi.org/10.1248/bpb.b12-00623
Park, J. Y., Ko, J. A., Kim, D. W., Kim, Y. M., Kwon, H. J., Jeong, H. J., Kim, C. Y., Park, K. H., Lee, W. S., & Ryu, Y. B. (2016). Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1), 23–30. https://doi.org/10.3109/14756366.2014.1003215
Patil, V., Patil, S. A., Patil, R., Bugarin, A., Beaman, K., & Patil, S. A. (2018). Exploration of (hetero)aryl Derived Thienylchalcones for Antiviral and Anticancer Activities. Medicinal Chemistry, 15(2), 150–161. https://doi.org/10.2174/1573406414666180524074648
Peiris, J. S. M., Yuen, K. Y., Osterhaus, A. D. M. E., & Stöhr, K. (2003). The Severe Acute Respiratory Syndrome. New England Journal of Medicine, 349(25), 2431–2441. https://doi.org/10.1056/NEJMra032498
Quiros Roldan, E., Biasiotto, G., Magro, P., & Zanella, I. (2020). The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacological Research, 158, 104904. https://doi.org/10.1016/j.phrs.2020.104904
Ramos, J. M., González-Alcaide, G., & Gutiérrez, F. (2016). Bibliometric analysis of the Spanish scientific production in Infectious Diseases and Microbiology. Enfermedades Infecciosas y Microbiologia Clinica, 34(3), 166–176. https://doi.org/10.1016/j.eimc.2015.04.007
Rasool, N., Akhtar, A., & Hussain, W. (2020). Insights into the inhibitory potential of selective phytochemicals against Mpro of 2019-nCoV: a computer-aided study. Structural Chemistry, 1. https://doi.org/10.1007/s11224-020-01536-6
Roa-Linares, V. C., Brand, Y. M., Agudelo-Gomez, L. S., Tangarife-Castaño, V., Betancur-Galvis, L. A., Gallego-Gomez, J. C., & González, M. A. (2016). Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. European Journal of Medicinal Chemistry, 108, 79–88. https://doi.org/10.1016/j.ejmech.2015.11.009
Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J. Y., Kim, D., Naguyen, T. T. H., Park, S. J., Chang, J. S., Park, K. H., Rho, M. C., & Lee, W. S. (2010). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic and Medicinal Chemistry, 18(22), 7940–7947. https://doi.org/10.1016/j.bmc.2010.09.035
Ryu, Y. B., Park, S. J., Kim, Y. M., Lee, J. Y., Seo, W. D., Chang, J. S., Park, K. H., Rho, M. C., & Lee, W. S. (2010). SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorganic and Medicinal Chemistry Letters, 20(6), 1873–1876. https://doi.org/10.1016/j.bmcl.2010.01.152
Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: Current knowledge. Virology Journal, 16(1), 1–22. https://doi.org/10.1186/s12985-019-1182-0
Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807). https://doi.org/10.1038/s41586-020-2179-y
Song, Y. H., Kim, D. W., Curtis-Long, M. J., Yuk, H. J., Wang, Y., Zhuang, N., Lee, K. H., Jeon, K. S., & Park, K. H. (2014). Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biological and Pharmaceutical Bulletin, 37(6), 1021–1028. https://doi.org/10.1248/bpb.b14-00026
Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., & Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134. https://doi.org/10.1016/j.micpath.2019.103580
Thabti, I., Albert, Q., Philippot, S., Dupire, F., Westerhuis, B., Fontanay, S., Risler, A., Kassab, T., Elfalleh, W., Aferchichi, A., & Varbanov, M. (2020). Advances on Antiviral Activity of Morus spp. Plant Extracts: Human Coronavirus and Virus-Related Respiratory Tract Infections in the Spotlight. Molecules, 25(8), 1876. https://doi.org/10.3390/molecules25081876
Thuy, B. T. P., My, T. T. A., Hai, N. T. T., Hieu, L. T., Hoa, T. T., Thi Phuong Loan, H., Triet, N. T., Anh, T. T. Van, Quy, P. T., Tat, P. Van, Hue, N. Van, Quang, D. T., Trung, N. T., Tung, V. T., Huynh, L. K., & Nhung, N. T. A. (2020). Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil. ACS Omega, 5(14), 8312–8320. https://doi.org/10.1021/acsomega.0c00772
Vellingiri, B., Jayaramayya, K., Iyer, M., Narayanasamy, A., Govindasamy, V., Giridharan, B., Ganesan, S., Venugopal, A., Venkatesan, D., Ganesan, H., Rajagopalan, K., Rahman, P. K. S. M., Cho, S. G., Kumar, N. S., & Subramaniam, M. D. (2020). COVID-19: A promising cure for the global panic. Science of the Total Environment, 725, 138277. https://doi.org/10.1016/j.scitotenv.2020.138277
Von Itzstein, M., Wu, W. Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Phan, T. Van, Smythe, M. L., White, H. F., Oliver, S. W., Colman, P. M., Varghese, J. N., Ryan, D. M., Woods, J. M., Bethell, R. C., Hotham, V. J., Cameron, J. M., & Penn, C. R. (1993). Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature, 363(6428), 418–423. https://doi.org/10.1038/363418a0
Wahedi, H. M., Ahmad, S., & Abbasi, S. W. (2020). Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1762743
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - Journal of the American Medical Association, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585
Wen, C. C., Kuo, Y. H., Jan, J. T., Liang, P. H., Wang, S. Y., Liu, H. G., Lee, C. K., Chang, S. T., Kuo, C. J., Lee, S. S., Hou, C. C., Hsiao, P. W., Chien, S. C., Shyur, L. F., & Yang, N. S. (2007). Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of Medicinal Chemistry, 50(17), 4087–4095. https://doi.org/10.1021/jm070295s
Weng, J. R., Lin, C. S., Lai, H. C., Lin, Y. P., Wang, C. Y., Tsai, Y. C., Wu, K. C., Huang, S. H., & Lin, C. W. (2019). Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Research, 273, 197767. https://doi.org/10.1016/j.virusres.2019.197767
Yu, J. wang, Wang, L., & Bao, L. dao. (2020). Exploring the active compounds of traditional Mongolian medicine in intervention of novel coronavirus (COVID-19) based on molecular docking method. Journal of Functional Foods, 71. https://doi.org/10.1016/j.jff.2020.104016
Yu, R., Chen, L., Lan, R., Shen, R., & Li, P. (2020). Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents, 106012. https://doi.org/10.1016/j.ijantimicag.2020.106012
Zhang, D. hai, Wu, K. lun, Zhang, X., Deng, S. qiong, & Peng, B. (2020). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 18(2), 152–158. https://doi.org/10.1016/j.joim.2020.02.005
Zheng, M., & Song, L. (2020). Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cellular and Molecular Immunology, 17(5), 536–538. https://doi.org/10.1038/s41423-020-0385-z
Zhou, Y., Lu, K., Pfefferle, S., Bertram, S., Glowacka, I., Drosten, C., Pöhlmann, S., & Simmons, G. (2010). A Single Asparagine-Linked Glycosylation Site of the Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Facilitates Inhibition by Mannose-Binding Lectin through Multiple Mechanisms. Journal of Virology, 84(17), 8753–8764. https://doi.org/10.1128/jvi.00554-10
Zhuang, M., Jiang, H., Suzuki, Y., Li, X., Xiao, P., Tanaka, T., Ling, H., Yang, B., Saitoh, H., Zhang, L., Qin, C., Sugamura, K., & Hattori, T. (2009). Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral Research, 82(1), 73–81. https://doi.org/10.1016/j.antiviral.2009.02.001

Published

2020-12-31

Issue

Section

Ciencias Químicas