ALMOST FULL OPERATORS AND APPLICATIONS
DOI:
https://doi.org/10.33936/revbasdelaciencia.v7i3.4195Keywords:
Almost full operators, essential number range.Abstract
This work presents results on almost full operators and their relationship with the essential numerical range of operators on reflexive spaces.
Downloads
References
Bonsal, F. F., & Duncan, J. (1973). Numerical Ranges II. Cambridge University Press.
Bravo, J. R. (1980). Relations between latT,latT^(-1),latT^2 and operators whit compact imaginary parts [PhD Dissertation. University of California].
Carothers, N. L. (2004). A Short Course on Banach Space Theory. Cambridge University Press.
Erdos, J. A. (1979a). Dissipative operators and approximation of inverses. Bulletin of the London Mathematical Society, 11(2), 142-144.
Erdos, J. A. (1979b). Singly generated algebras containing compact operators. Journal of Operator Theory, 2(2), 211-214.
Karanasios, S. (1994). Full operators on reflexive Banach spaces. Bulletin of the Greek Math. Soc, 36, 81-86.
Kreyszig, E. (1979). Introductory functional analysis with applications. John Wiley & Sons.
Rosales, E. (2012). Operadores casi llenos y de radio numérico alcanzable. Boletín de la Asociación Matemática Venezolana, 19(2), 147-154.
Rosales, E. (2020). Resultados sobre operador llenos en espacios de Hilbert. Revista Bases de la Ciencia. 5(1), 51-62. https://doi.org/10.33936/rev_bas_de_la_ciencia.v5i1.1686
Schechter, M. (1971). Principles of functional Analysis. Academic Press.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Edixo Rosales

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.