ALMOST FULL OPERATORS AND APPLICATIONS

Authors

DOI:

https://doi.org/10.33936/revbasdelaciencia.v7i3.4195

Keywords:

Almost full operators, essential number range.

Abstract

This work presents results on almost full operators and their relationship with the essential numerical range of operators on reflexive  spaces.

Downloads

Download data is not yet available.

References

Bonsal, F. F., & Duncan, J. (1973). Numerical Ranges II. Cambridge University Press.

Bravo, J. R. (1980). Relations between latT,latT^(-1),latT^2 and operators whit compact imaginary parts [PhD Dissertation. University of California].

Carothers, N. L. (2004). A Short Course on Banach Space Theory. Cambridge University Press.

Erdos, J. A. (1979a). Dissipative operators and approximation of inverses. Bulletin of the London Mathematical Society, 11(2), 142-144.

Erdos, J. A. (1979b). Singly generated algebras containing compact operators. Journal of Operator Theory, 2(2), 211-214.

Karanasios, S. (1994). Full operators on reflexive Banach spaces. Bulletin of the Greek Math. Soc, 36, 81-86.

Kreyszig, E. (1979). Introductory functional analysis with applications. John Wiley & Sons.

Rosales, E. (2012). Operadores casi llenos y de radio numérico alcanzable. Boletín de la Asociación Matemática Venezolana, 19(2), 147-154.

Rosales, E. (2020). Resultados sobre operador llenos en espacios de Hilbert. Revista Bases de la Ciencia. 5(1), 51-62. https://doi.org/10.33936/rev_bas_de_la_ciencia.v5i1.1686

Schechter, M. (1971). Principles of functional Analysis. Academic Press.

Published

2022-12-27

Issue

Section

Ciencias Matemáticas