REVIEW OF THE VAN DER POL EQUATION AND ITS MODIFICATIONS

Authors

DOI:

https://doi.org/10.33936/revbasdelaciencia.v7iESPECIAL.4408

Keywords:

Conjunto de Cantor robustamente transitivo, generalización de Boole, Transitividad, Transformación de Boole.

Abstract

The studies carried out on the Boole transformation B(x) = x− 1
x and its parameterizations, for the most part, have been
done from the perspective of the infinite ergodic theory and recently the ergodicity for the absolutely continuous (respect to
Lebesgue measure) invariant probability measure for Bα(x) = α(x− 1
x ) with α ∈ (0, 1). These studies only consider the
cases where the family of functions do not have fixed points and even in that case the dynamic behavior is not completely
described. Starting from this, consider a generalization of the Boole transformation of the form fabc (x) = ax− b
x +c with
a > 0, b > 0 and c ∈ R and a study of their dynamics is carried out for a wide set of parameter spaces. Specifically, a region
of the set of parameters is obtained where fabc is transitive and presents a relation, by means of topological conjugation,
with the symbolic dynamics (associated with the Shift) for a subset of the space of two symbols, which justifies its chaotic
behavior in this case. It is shown that there is an open set of the parameter space where fabc is uniformly robustly transitive.

Also, it is proved that for a > 1, b > 0 and c ∈ R, f has two hyperbolic fixed points and between these two points there
exists a uniformly robustly transitive invariant Cantor set, whose dynamic is equivalent to unilateral shift of two symbols.

Downloads

Download data is not yet available.

References

Aaronson, J. [J.], y Society, A. M. (1997). An Introduction to Infinite Ergodic Theory. American Mathematical Society. https://books.google.com.ec/books?id=3mRo0wTdNv0C

Aaronson, J. [Jon]. (1978). Ergodic theory for inner functions of the upper half plane. Annales de l’I.H.P. Probabilités et statistiques, 14(3), 233-253. http://www.numdam.org/item/AIHPB_ 1978__14_3_233_0/

Adler, R. L., y Weiss, B. (1973). The ergodic infinite measure preserving transformation of boole. Israel Journal of Mathematics, 16(3), 263-278. https://doi.org/10.1007/bf02756706

Blackmore, D., Balinsky, A. A., Kycia, R., y Prykarpatski, A. K. (2021). Entropy and Ergodicity of Boole-Type Transformations. Entropy, 23(11). https://doi.org/10.3390/e23111405

Leal, B., Mata, G., y Ramírez, D. (2018). Traslaciones de Transformaciones Tipo Boole Robustamente Transitivas. Novasinergia, ISSN 2631-2654, 1(1), 6-13. https://doi.org/10.37135/unach.ns. 001.01.01

Leal, B., y Munoz, S. (2022). Invariant Cantor sets in the parametrized Hénon-Devaney map. Dyna- mical Systems, 0(0), 1-22. https://doi.org/10.1080/14689367.2021.2012558

Leal, B., y Muñoz, S. [Sergio]. (2021). Hénon–Devaney like maps. Nonlinearity, 34(5), 2878-2896. https://doi.org/10.1088/1361-6544/abdd95

Letac, G. (1977). Which functions preserve Cauchy laws? Proceedings of the American Mathematical Society, 67(2), 277-286. https://doi.org/10.1090/s0002-9939-1977-0584393-8

Muñoz, S. [S.]. (2006). Robust transitivity and ergodicity of transformations ofthe real line and the real plane. IMPA, Doctoral Thesis. https://preprint.impa.br/visualizar?id=5651

Muñoz, S. [S.]. (2015). Robust transitivity of maps of the real line [SERIE: A]. Discrete and Con- tinuousDynamical Systems., 35(3), 1163-1177. http://aimsciences.org//article/id/807e52c6- a741-470cb708-1cd668ecc7cb

Neuwirth, J. H. (1978). Ergodicity of some mapping of the circle and the line. IsraelJ. Math., 31. Okubo, K.-i., y Umeno, K. (2018). Universality of the route to chaos: Exact analysis. Progress of

Theoretical and Experimental Physics, 2018(10). https://doi.org/10.1093/ptep/pty094 Okubo, K.-i., y Umeno, K. (2021). Infinite ergodicity that preserves the Lebesgue measure. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(3), 033135. https://doi.org/10.1063/5.

Prykarpatsky, A. K., y Feldman, J. (2006). On the ergodic and spectral properties of generalized Boole transformations. I. Miskolc Mathematical Notes, 7(1), 91. https://doi.org/10.18514/mmn.2006. 128

Umeno, K. (1998). Superposition of chaotic processes with convergence to Lévy’s stable law. Physical Review E, 58(2), 2644-2647. https://doi.org/10.1103/physreve.58.2644

Umeno, K., y Okubo, K.-i. (2016). Exact Lyapunov exponents of the generalized Boole transforma- tions. Progress of Theoretical and Experimental Physics, 2016(2), 021A01. https://doi.org/10. 1093/ptep/ptv195

Published

2022-12-27

Issue

Section

Ciencias Matemáticas