A STUDY OF THE LAGUERRE POLYNOMIALS

Authors

DOI:

https://doi.org/10.33936/revbasdelaciencia.v7iESPECIAL.5090

Keywords:

Convergence, Laguerre polynomials, orthogonality.

Abstract

In this article the complex Laguerre polynomials L(α−k)(z) are presented, together with some expressions that result from k

them, which appear using definitions mentioned in the text. In addition, a review of the properties of the Laguerre poly-

nomials and their convergence in mean, studied by various authors throughout history, is carried out. The convergence of

the Laguerre polynomials begins with the studies of Pollard, who posits that for it to be fulfilled

Rb PN p α limN−→∞ a f(x)− 0 anPn(x) dF(x) = 0,thenp = 2,thenAskeyandWaingerposeaLaguerrefunctionLn(x) =

xα/2rn exp(−x/2)Lαn(x) which converges if 4/3 < p < 4. In the following investigation, Muckenhoupt indicates

that in the Laguerre polynomials, the terms will not converge to 0 at the mean if p is not between 4/3 and 4, but

this time proving that p is a fixed number that satisfies 1 ≤ p ≤ 4/3 or 4 ≤ p ≤ ∞. Then the same Mucken-

houpt generalizes Askey and Wainger’s results for mean convergence with 1 < p < ∞. The results improve in terms

of weighting functions, their research is based on inequalities that required a larger weighting function on the right

sidethanontheleftR∞|Sα(f,x)U(x)|pdx ≤ CR∞|f(x)V(x)|pdx. Later,Poianiprovesinequalitiesoftheform 0n0

∥σn(f,x)W(x)∥p ≤ ∥f(x)W(x)∥p where σn is the nth (C,1) convergence of the Laguerre series of f, W(x) the weight function of a particular form and the norm Lp is taken over (0, ∞), here only a weight function is used. Finally, there is the research carried out by Mario Riera, who studies said convergence with Dirac deltas, in this case for Laguerre with a delta at zero

Downloads

Download data is not yet available.

References

Aloui, B., y Khériji, L. (2019). Connection formulas and representations of laguerre polynomials in terms of the action of linear differential operators. Проблемы анализа, 8(3), 24–37.

Askey, R., y Wainger, S. (1965). Mean convergence of expansions in Laguerre and Hermite series. American Journal of Mathematics, 87(3), 695–708. doi: 10.2307/2373069

Cacao, M., I. Falcao. (2011). Laguerre deivative ang monogenic laguerre polynomials. An Operational Approach Math Comput, Modelling 53.

Gadzhimirzaev, R. M. (2020). Integral estimates for laguerre polynomials with exponential weight function. Russian Mathematics, 64(4), 12–20.

Kazmin, Y. A. (1969). On appell polynomials. Mat. Zametki.

Kim, T., San Kim, D., Hwang, K.-W., y Seo, J. J. (2016). Some identities of Laguerre polynomials arising from differential equations. Advances in Difference Equations, 2016(1), 1–9. doi: 10.1186/ s13662-016-0896-1

Malonek, G., H.R. Tomaz. (2011). Laguerre polynomials in several hypercomplex variables and their matrix representation. Computational Science and its Applications.

Muckenhoupt, B. (1970a). Mean convergence of Hermite and Laguerre series. I. Transactions of the American Mathematical Society, 147(2), 419–431. doi: 10.2307/1995204

Muckenhoupt, B. (1970b). Mean convergence of hermite and laguerre series. ii. Transactions of the American Mathematical Society, 147(2), 433–460. doi: 10.2307/1995205

Poiani, Eileen L. (1972). Mean Cesaro summability of Laguerre and Hermite series. Transactions of the American Mathematical Society, 173, 1–31. doi: 10.1090/S0002-9947-1972-0310537-9

Pollard, H. (1946). The mean convergence of orthogonal series of polynomials. Proceedings of the National Academy of Sciences of the United States of America, 32(1), 8. doi: 10.1073/pnas.32.1.8

Pollard, H. (1948). The mean convergence of orthogonal series. ii. Transactions of the American mathematical society, 63(2), 355–367. Descargado de https://www.ams.org/journals/tran/ 1948-063-02/S0002-9947-1948-0023941-X/S0002-9947-1948-0023941-X.pdf

Qi, F. (2018). Simplifying coefficients in a family of ordinary differential equations related to the generating function of the laguerre polynomials. Applications and Applied Mathematics: An Inter- national Journal (AAM), 13(2), 9.

Riahifar, A., y Matinfar, M. (2018). Application of laguerre polynomials for solving infinite boundary integro-differential equations. International Journal of Industrial Mathematics, 10(2), 143–149.

Riera, M. P. (1989). Series de Fourier respecto de sistemas ortogonales : estudio de la convergencia en espacios de Lebesgue y de Lorentz (Tesis Doctoral, Universidad de Zaragoza). Descargado de http://anamat.unizar.es/mperez/preprints/tesisMPerez.pdf

Shao, W. K., He, Y., y Pan, J. (2016). Some identities for the generalized Laguerre polynomials. J. Nonlinear Sci. Appl, 9(5), 3388–3396. doi: 10.22436/JNSA.009.05.124

Szego, G. (1939). Orthogonal polynomials (Vol. 23). American Mathematical Soc.

Torres, A. V., y cols. (2017). Polinomios ortogonales confluentes matriciales (Tesis de Mas- ter, Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales). Descargado de https://tesisfcp.bdigital.uncu.edu.ar/objetos_digitales/14017/tesis-torres -2017-1.pdf

Published

2022-12-27

Issue

Section

Ciencias Matemáticas