IS THE YIELD OF POTATO (Solanum tuberosum) IN ECUADOR INFLUENCED BY CLIMATIC, GENETIC AND CROP TECHNOLOGY FACTORS?
DOI:
https://doi.org/10.33936/revbasdelaciencia.v8i2.5403Keywords:
papa, regresión lineal múltiple, rendimiento, EcuadorAbstract
In this study, the multiple regression model was generated to predict the yield of potato (Solanum tuberosum) crop in Ecuador, using the annual production record of the Agricultural Surface and Production Surveys for the period 2002-2019. The independent variables considered were the area sown with different types of seed (variety), cultivation practices, sales volume and area sown, lost and harvested. The results show that yield is influenced by five independent variables such as: improved seed, irrigation, fertilizer application, frost and others. The multiple regression model has a good fit with a coefficient of determination of 0.86, an RMSE of 1.014 ton/ha and a significantly low MAE (0.024 ton/ha), which helps verify the arrangement of the model. On the other hand, the evaluation of the yield increase (p≤0.01) revealed average annual growth rates between 0.87 and 2.07% for the provinces of Tungurahua (0.87%), Pichincha (1.26%), Chimborazo (1.54%), Carchi (1.71%), Cotopaxi (1.91%) and Bolívar (2.07%). Potato crop yield prediction in Ecuador focuses mainly on the influence of climatic and genetic factors. It is important that policy actions allow farmers to have access to credit and favor the use of crop management technologies such as irrigation, fertilization and phytosanitary controls.
Downloads
References
Abrougui, K., Gabsi, K., Mercatoris, B., Khemis, C., Amami, R., & Chehaibi, S. (2019). Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR). Soil and Tillage Research, 190, 202–208. https://doi.org/10.1016/j.still.2019.01.011
Afrasiabian, B., & Eftekhari, M. (2022). Prediction of mode I fracture toughness of rock using linear multiple regression and gene expression programming. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2022.03.008
Amare, T., Bazie, Z., Alemu, E., Alemayehu, B., Tenagne, A., Kerebh, B., Taye, Y., Awoke, A., Feyisa, T., & Kidanu, S. (2022). Yield of potato (Solanum tuberosum L.) increased by more than two-folds through nitrogen and phosphorus fertilizers in the highlands of North-Western Ethiopia. Heliyon, 8(10), e11111. https://doi.org/10.1016/j.heliyon.2022.e11111
Ávila-Valdés, A., Quinet, M., Lutts, S., Martínez, J. P., & Lizana, X. C. (2020). Tuber yield and quality responses of potato to moderate temperature increase during Tuber bulking under two water availability scenarios. Field Crops Research, 251, 107786. https://doi.org/10.1016/j.fcr.2020.107786
Binyamin, R., Ahmed, N., Ashraf, W., Li, Y., Ghani, M. U., Zeshan, M. A., Ali, S., Khan, A. U. R., Ahmed, R., Ahmed, M. A. A., Aljowaie, R. M., Alkahtani, A. M., & Vachova, P. (2022). Prediction of mungbean yellow mosaic virus disease using multiple regression models. Journal of King Saud University - Science, 102094. https://doi.org/10.1016/j.jksus.2022.102094
Bocco, M., Sayago, S., & Violini, S. (2015). Modelos simples para estimar rendimiento de cultivos agrícolas a partir de imágenes satelitales: Una herramienta para la planificación. 2(2), 10.
Cavatassi, R., Salazar, L., González-Flores, M., & Winters, P. (2011). How do Agricultural Programmes Alter Crop Production? Evidence from Ecuador. Journal of Agricultural Economics, 62(2), 403-428. https://doi.org/10.1111/j.1477-9552.2010.00279.x
Chengot, R., Knox, J. W., Coxon, G., Cojocaru, G., & Holman, I. P. (2023). An enhanced version of the D-Risk decision support webtool for multi-scale management of water abstraction and drought risks in irrigated agriculture. Computers and Electronics in Agriculture, 204, 107516. https://doi.org/10.1016/j.compag.2022.107516
Doan, C. C., & Tanaka, M. (2022). Relationships between Tomato Cluster Growth Indices and Cumulative Environmental Factors during Greenhouse Cultivation. Scientia Horticulturae, 295, 110803. https://doi.org/10.1016/j.scienta.2021.110803
ESPAC. (2017). Encuesta de Superficie y Producción Agropecuaria Continua. Presentación Principales Resultados ESPAC -INEC 2017.pdf.
ESPAC. (2021). Principales resultados-ESPAC_2021. INEC. https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2021/Principales%20resultados-ESPAC_2021.pdf. https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2021/Principales%20resultados-ESPAC_2021.pd
Etemadi, S., & Khashei, M. (2021). Etemadi multiple linear regression. Measurement, 186, 110080. https://doi.org/10.1016/j.measurement.2021.110080
FAO. (2022). Duplicar la producción mundial de papa en 10 años es posible. Congreso Mundial de la Papa. Https://www.fao.org/newsroom/detail/doubling-global-potato-production-in-10-years-is-possible/es. Newsroom. https://www.fao.org/newsroom/detail/doubling-global-potato-production-in-10-years-is-possible/es
Feng, W., Liu, Y., Kong, X., Chen, Y., & Pan, J. (2018). Spatial and Temporal Variation of Grain Production and Its Influencing Factors at the County Level in China. https://doi.org/10.15957/j.cnki.jjdl.2018.05.018
Ghani, I. M. M., & Ahmad, S. (2010). Stepwise Multiple Regression Method to Forecast Fish Landing. Procedia - Social and Behavioral Sciences, 8, 549–554. https://doi.org/10.1016/j.sbspro.2010.12.076
Gómez-Gómez, M., Danglot-Banck, C., & Vega-Franco, L. (2003). Sinopsis de pruebas estadísticas no paramétricas. Cuándo usarlas. 70(2), 10.
Haverkort, A. J., Franke, A. C., Steyn, J. M., Pronk, A. A., Caldiz, D. O., & Kooman, P. L. (2015). A Robust Potato Model: LINTUL-POTATO-DSS. Potato Research, 58(4), 313–327. https://doi.org/10.1007/s11540-015-9303-7
Hosseinzadeh, A., Baziar, M., Alidadi, H., Zhou, J. L., Altaee, A., Najafpoor, A. A., & Jafarpour, S. (2020). Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions. Bioresource Technology, 303, 122926. https://doi.org/10.1016/j.biortech.2020.122926
Hunt, J. R., Lilley, J. M., Trevaskis, B., Flohr, B. M., Peake, A., Fletcher, A., Zwart, A. B., Gobbett, D., & Kirkegaard, J. A. (2019). Early sowing systems can boost Australian wheat yields despite recent climate change. Nature Climate Change, 9(3), Art. 3. https://doi.org/10.1038/s41558-019-0417-9
Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981–2010 explained by climate change. Environmental Research Letters, 11(3), 034003. https://doi.org/10.1088/1748-9326/11/3/034003
INEC. (2017). Glosario de la encuesta de superficie y producción agropecuaria continua. Definiciones básicas.
INEC. (2020). Encuesta de Superficie y Producción Agropecuaria Continua 2020. https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2020/Presentacion%20ESPAC%202020.pdf
INIA. (2017). ,Manual del cultivo de la papa en Chile. Instituto de Desarrollo Agropecuario—Instituto de Investigaciones Agropecuarias. Boletín INIA N° 375.pdf. https://biblioteca.inia.cl/bitstream/handle/20.500.14001/6706/Bolet%C3%ADn%20INIA%20N%C2%B0%20375?sequence=1&isAllowed=y
Kukal, M. S., & Irmak, S. (2018). Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production. Scientific Reports, 8(1), Art. 1. https://doi.org/10.1038/s41598-018-21848-2
Liu, X., Zhou, T., Zhang, X., Zhang, S., Liang, X., Gani, R., & Kontogeorgis, G. M. (2018). Application of COSMO-RS and UNIFAC for ionic liquids based gas separation. Chemical Engineering Science, 192, 816–828. https://doi.org/10.1016/j.ces.2018.08.002
Liu, Y., Heuvelink, G. B. M., Bai, Z., He, P., Xu, X., Ding, W., & Huang, S. (2021). Analysis of spatio-temporal variation of crop yield in China using stepwise multiple linear regression. Field Crops Research, 264, 108098. https://doi.org/10.1016/j.fcr.2021.108098
Lutaladio, N., & Castaldi, L. (2009). Potato: The hidden treasure. Journal of Food Composition and Analysis, 22(6), 491–493. https://doi.org/10.1016/j.jfca.2009.05.002
Montemayor Trejo, J. A., Munguía López, J., Segura Castruita, M. Á., Yescas Coronado, P., Orozco Vidal, J. A., Woo Reza, J. L., Montemayor Trejo, J. A., Munguía López, J., Segura Castruita, M. Á., Yescas Coronado, P., Orozco Vidal, J. A., & Woo Reza, J. L. (2017). La regresión lineal en la evaluación de variables de ingeniería de riego agrícola y del cultivo de maíz forrajero. Acta universitaria, 27(1), 40–44. https://doi.org/10.15174/au.2017.1255
Pahlavan-Rad, M. R., Dahmardeh, K., Hadizadeh, M., Keykha, G., Mohammadnia, N., Gangali, M., Keikha, M., Davatgar, N., & Brungard, C. (2020). Prediction of soil water infiltration using multiple linear regression and random forest in a dry flood plain, eastern Iran. CATENA, 194, 104715. https://doi.org/10.1016/j.catena.2020.104715
Petropoulos, S. A., Fernandes, Â., Polyzos, N., Antoniadis, V., Barros, L., & C. F.R. Ferreira, I. (2020). The Impact of Fertilization Regime on the Crop Performance and Chemical Composition of Potato (Solanum tuberosum L.) Cultivated in Central Greece. Agronomy, 10(4), Art. 4. https://doi.org/10.3390/agronomy10040474
Raymundo, R., Asseng, S., Prasad, R., Kleinwechter, U., Condori, B., Bowen, W., Wolf, J., Olesen, J. E., Dong, Q., Zotarelli, L., Gastelo, M., Alva, A., Travasso, M., & Arora, V. (2018). Global field experiments for potato simulations. Open Data Journal for Agricultural Research, 4, 35–44. https://doi.org/10.18174/odjar.v4i0.15813
Salcedo, S., & Guzmán, L. (2014). Recomendaciones de Política. Agricultura Familiar en América Latina y el Caribe. FAO. 486.
Shastry, A., Sanjay, H. A., & Bhanusree, E. (2017). Prediction of Crop Yield Using Regression Techniques. Int. J. SoftComput., 7.
Singaña, D. (2021). Los límites de la productividad del cultivo de papa en Ecuador entre 2017 y 2018. Revista Latinoamericana de la Papa, 25(1), Art. 1. https://doi.org/10.37066/ralap.v25i1.416
Vasco, C., Torres, B., Jácome, E., Torres, A., Eche, D., & Velasco, C. (2021). Use of chemical fertilizers and pesticides in frontier areas: A case study in the Northern Ecuadorian Amazon. Land Use Policy, 107, 105490. https://doi.org/10.1016/j.landusepol.2021.105490
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Victor Mario García-Mora, Mercy Ilbay- Yupa, Raúl Armando Ramos Veintimilla

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.