Influence of essential oils on the characteristics of a biofilm made with cassava husk starch

Authors

  • Sonia Nathaly Giler Intriago Programa de Posgrado en Ingeniería Química, Instituto de Posgrado, Universidad Técnica de Manabí, Portoviejo, Ecuador. https://orcid.org/0000-0003-4256-2792
  • Lisbeth Mercedes Anchundia Vélez Carrera Ingeniería Química, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador. https://orcid.org/0000-0001-9684-1880
  • Felipe Arturo Jadán Piedra Carrera Ingeniería Química, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador. https://orcid.org/0000-0002-5640-2207
  • Virginia Sánchez Mendoza Carrera Ingeniería Química, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador. https://orcid.org/0000-0001-6366-9084
  • Carlos Jadán Piedra Carrera de Agroindustria, Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAMMFL, Calceta, Ecuador. https://orcid.org/0000-0002-4022-9702

DOI:

https://doi.org/10.33936/revbasdelaciencia.v9i2.6053

Keywords:

cassava peel, bioactive packaging, lavender, oregano

Abstract

Cassava peel constitutes a food waste that is presented as a viable alternative for the manufacture of biodegradable
packaging. The incorporation of essential oils with antimicrobial activity in biopolymeric packaging allows the
obtaining of active materials that increase the shelf life of the food. In this research, INIAP 650 cassava peel
starch was used to prepare a biodegradable film to be used as food packaging. Physicochemical properties were
evaluated, including thickness, density, humidity and solubility in water, acid (HCl) and base (NaOH), optical
properties (color), and biodegradability. The films were prepared using the casting technique with the addition of
glycerol as a plasticizer. In the final stage of the process, essential oils of oregano and lavender were incorporated
separately, as well as their mixtures. The results indicate that the humidity and density of the film are not influenced
by the addition of essential oils; on the contrary, the solubility in H2O, HCl and NaOH increases in the presence
of essential oils, being proportional to the concentration for HCl and NaOH. The color of the film tends towards
darkness with values considerably lower than those obtained from cassava starch. The biodegradability of the films
after 21 days reached a disintegration of up to 50% in relation to their initial weight. The results indicate that the
manufactured films represent a new alternative for active food packaging applications.

Downloads

Download data is not yet available.

References

Adame, M. Y., Wang, Y., Shi, C., Aziz, T., Al-Asmari, F., Sameeh, M. Y., Cui, H., & Lin, L. (2024). Fortification

of pullulan/cassava starch-based edible films incorporated with LC-EO nanoparticles and the application for

beef meat preservation. International Journal of Biological Macromolecules, 279(135629), 135629. https://doi.

org/10.1016/j.ijbiomac.2024.135629

Amin, U., Khan, M. K. I., Maan, A. A., Nazir, A., Riaz, S., Khan, M. U., Sultan, M., Munekata, P. E. S., & Lorenzo,

J. M. (2022). Biodegradable active, intelligent, and smart packaging materials for food applications. Food

Packaging and Shelf Life, 33(100903), 100903. https://doi.org/10.1016/j.fpsl.2022.100903

ASTM International. (2017). Standard test methods for water vapor transmission of materials. ASTM INTERNATIONAL

Helping Our World Work Better. https://www.astm.org/e0096-00.html

Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging.

Trends in Food Science & Technology, 48, 51–62. https://doi.org/10.1016/j.tifs.2015.12.001

Ceballos, R. L., Ochoa-Yepes, O., Goyanes, S., Bernal, C., & Famá, L. (2020). Effect of yerba mate extract on the

performance of starch films obtained by extrusion and compression molding as active and smart packaging.

Carbohydrate Polymers, 244(116495), 116495. https://doi.org/10.1016/j.carbpol.2020.116495

de Lima Barizão, C., Crepaldi, M. I., Junior, O. de O. S., de Oliveira, A. C., Martins, A. F., Garcia, P. S., & Bonafé, E. G.

(2020). Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production

costs. International Journal of Biological Macromolecules, 165(Pt A), 582–590. https://doi.org/10.1016/j.

ijbiomac.2020.09.150

dos Santos Caetano, K., Almeida Lopes, N., Haas Costa, T. M., Brandelli, A., Rodrigues, E., Hickmann Flôres, S., &

Cladera-Olivera, F. (2018). Characterization of active biodegradable films based on cassava starch and natural

compounds. Food Packaging and Shelf Life, 16, 138–147. https://doi.org/10.1016/j.fpsl.2018.03.006

dos Santos Paglione, I., Galindo, M. V., de Medeiros, J. A. S., Yamashita, F., Alvim, I. D., Ferreira Grosso, C. R.,

Sakanaka, L. S., & Shirai, M. A. (2019). Comparative study of the properties of soy protein concentrate films

containing free and encapsulated oregano essential oil. Food Packaging and Shelf Life, 22(100419), 100419.

https://doi.org/10.1016/j.fpsl.2019.100419

Ernest Mbamalu, E., & Yakub Mohammed, I. (2024). Co-valorisation of cassava peel and rice husk to biofuel precursor

via intermediate pyrolysis: Kinetics, thermodynamic and pyrolytic oil characterisation. Waste Management

Bulletin, 2(4), 194–208. https://doi.org/10.1016/j.wmb.2024.11.004

FAO. (2010). La Yuca - Food and Agriculture Organization. FAO. https://www.fao.org/3/a1028s/a1028s01.pdf

FAOSTAT. (2024). Producción de cultivos y ganado. Organización de las Naciones Unidas para la Alimentación y la

Agricultura (FAO). https://www.fao.org/faostat/es/#data/QCL

Flores Fidelis, J. C., Marchi, L. B., Scapim, M. R. S., Gobetti, N. D., Yamashita, F., & Giriboni Monteiro, A. R. (2022).

Development of biodegradable films containing pomegranate peel extract and potassium sorbate. Lebensmittel-

Wissenschaft Und Technologie [Food Science and Technology], 160(113302), 113302. https://doi.org/10.1016/j.

lwt.2022.113302

Guo, Y., Cui, Y., Cheng, M., Zhang, R., Zhao, Z., Wang, X., & Guo, S. (2022). Development and properties of active

films based on potato starch modified by low-temperature plasma and enriched with cinnamon essential oil

coated with nanoparticles. Lebensmittel-Wissenschaft Und Technologie [Food Science and Technology],

(114159), 114159. https://doi.org/10.1016/j.lwt.2022.114159

Gutiérrez, T. J., Toro-Márquez, L. A., Merino, D., & Mendieta, J. R. (2019). Hydrogen-bonding interactions and

compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added

Jamaica flower extract. Food Hydrocolloids, 89, 283–293. https://doi.org/10.1016/j.foodhyd.2018.10.058

Hernández, M. S., Ludueña, L. N., & Flores, S. K. (2023). Citric acid, chitosan and oregano essential oil impact on physical

and antimicrobial properties of cassava starch films. Carbohydrate Polymer Technologies and Applications,

(100307), 100307. https://doi.org/10.1016/j.carpta.2023.100307

Hernández, M. S., Ludueña, L. N., & Flores, S. K. (2024). Combined effect of oregano essential oil and glycerol on

physicochemical properties of antimicrobial films based on chitosan and acetylated cassava starch. Food

Hydrocolloids, 156(110259), 110259. https://doi.org/10.1016/j.foodhyd.2024.110259

Kanmani, P., & Lim, S. T. (2013). Development and characterization of novel probiotic-residing pullulan/starch edible

films. Food Chemistry, 141(2), 1041–1049. https://doi.org/10.1016/j.foodchem.2013.03.103

Kwiatkowski, P., Łopusiewicz, Ł., Kostek, M., Drozłowska, E., Pruss, A., Wojciuk, B., Sienkiewicz, M., Zielińska-

Bliźniewska, H., & Dołęgowska, B. (2019). The antibacterial activity of lavender essential oil alone and in

combination with octenidine dihydrochloride against MRSA strains. Molecules (Basel, Switzerland), 25(1), 95.

https://doi.org/10.3390/molecules25010095

Long, H., Bi, Y., Pu, L., Xu, W., Xue, H., Fu, G., & Prusky, D. (2022). Preparation of chitosan/ fennel seed essential

oil/ starch sodium octenyl succinate composite films for apple fruit preservation. Lebensmittel-Wissenschaft Und

Technologie [Food Science and Technology], 167(113826), 113826. https://doi.org/10.1016/j.lwt.2022.113826

Lopes, T. de S., Alves, J. L. F., Delmiro, T. M., Calixto, G. Q., de Oliveira, K. F. S., Barbosa, A. da S., Voigt, E. L., Melo,

D. M. de A., & Braga, R. M. (2024). From cassava peel (Manihot esculenta) to hydrocarbon-rich bio-oil: Catalytic

flash pyrolysis as a new valorization route. Biomass & Bioenergy, 190(107432), 107432. https://doi.org/10.1016/j.

biombioe.2024.107432

Marchese, A., Arciola, C. R., Barbieri, R., Silva, A. S., Nabavi, S. F., Tsetegho Sokeng, A. J., Izadi, M., Jafari, N. J.,

Suntar, I., Daglia, M., & Nabavi, S. M. (2017). Update on monoterpenes as antimicrobial agents: A particular

focus on p-cymene. Materials, 10(8), 947. https://doi.org/10.3390/ma10080947

Naciones Unidas. (2018). Día Mundial del Medio Ambiente: La lucha contra la contaminación por plásticos es

responsabilidad de todos. Noticias ONU. https://news.un.org/es/story/2018/06/1435111

Odeyemi, S. O., Iwuozor, K. O., Emenike, E. C., Odeyemi, O. T., & Adeniyi, A. G. (2023). Valorization of waste cassava

peel into biochar: An alternative to electrically-powered process. Total Environment Research Themes, 6(100029),

https://doi.org/10.1016/j.totert.2023.100029

Pelissari, F. M., Grossmann, M. V. E., Yamashita, F., & Pineda, E. A. G. (2009). Antimicrobial, mechanical, and barrier

properties of cassava starch-chitosan films incorporated with oregano essential oil. Journal of Agricultural and

Food Chemistry, 57(16), 7499–7504. https://doi.org/10.1021/jf9002363

Perdana, M. I., Ruamcharoen, J., Panphon, S., & Leelakriangsak, M. (2021). Antimicrobial activity and physical

properties of starch/chitosan film incorporated with lemongrass essential oil and its application. Lebensmittel-

Wissenschaft Und Technologie [Food Science and Technology], 141(110934), 110934. https://doi.org/10.1016/j.

lwt.2021.110934

Pérez-Vergara, L. D., Cifuentes, M. T., Franco, A. P., Pérez-Cervera, C. E., & Andrade-Pizarro, R. D. (2020). Development

and characterization of edible films based on native cassava starch, beeswax, and propolis. NFS Journal, 21, 39–

https://doi.org/10.1016/j.nfs.2020.09.002

Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., & Goyanes, S. (2017). Edible cassava starch films

carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488–

https://doi.org/10.1016/j.foodhyd.2016.09.034

PlasticsEurope. (2021). Plasctics: the Facts 2021. https://plasticseurope.org/wp-content/uploads/2021/12/Plastics-the-

Facts-2021-web-final.pdf

Plastics Europe. (2023). Plastics – The fast facts 2023. https://plasticseurope.org/es/wp-content/uploads/sites/4/2023/10/

Plastics-the-fast-Facts-2023.pdf

Registro oficial 354. (2020). Tercer suplemento, Ley Orgánica para la Racionalizaciòn, Reutilizaciòn y Reducciòn de

Plàsticos de un Solo Uso. https://www.produccion.gob.ec/wp-content/uploads/downloads/2023/02/1.-Ley-deplasticos-

R.Oficial.-21.12.2020-Comprimido.pdf

Shahrampour, D., Khomeiri, M., Razavi, S. M. A., & Kashiri, M. (2020). Development and characterization of alginate/

pectin edible films containing Lactobacillus plantarum KMC 45. Lebensmittel-Wissenschaft Und Technologie

[Food Science and Technology], 118(108758), 108758. https://doi.org/10.1016/j.lwt.2019.108758

Shi, C., Jia, L., Tao, H., Hu, W., Li, C., Aziz, T., Al-Asmari, F., Sameeh, M. Y., Cui, H., & Lin, L. (2024). Fortification of

cassava starch edible films with Litsea cubeba essential oil for chicken meat preservation. International Journal of

Biological Macromolecules, 276(133920), 133920. https://doi.org/10.1016/j.ijbiomac.2024.133920

Souza, A. C., Goto, G. E. O., Mainardi, J. A., Coelho, A. C. V., & Tadini, C. C. (2013). Cassava starch composite

films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier

properties. Lebensmittel-Wissenschaft Und Technologie [Food Science and Technology], 54(2), 346–352. https://

doi.org/10.1016/j.lwt.2013.06.017

Šuput, D., Lazić, V., Pezo, L., Markov, S., Vaštag, Ž., Popović, L., Radulović, A., Ostojić, S., Zlatanović, S., & Popović,

S. (2016). Characterization of starch edible films with different essential oils addition. Polish Journal of Food and

Nutrition Sciences, 66(4), 277–286. https://doi.org/10.1515/pjfns-2016-0008

Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., & Rachtanapun, P. (2012). Mechanical and physical

properties of cassava starch-gelatin composite films. International Journal of Polymeric Materials, 61(10), 778–

https://doi.org/10.1080/00914037.2011.610049

Travalini, A. P., Lamsal, B., Magalhães, W. L. E., & Demiate, I. M. (2019). Cassava starch films reinforced with

lignocellulose nanofibers from cassava bagasse. International Journal of Biological Macromolecules, 139, 1151–

https://doi.org/10.1016/j.ijbiomac.2019.08.115

Vianna, T. C., Marinho, C. O., Marangoni Júnior, L., Ibrahim, S. A., & Vieira, R. P. (2021). Essential oils as additives in

active starch-based food packaging films: A review. International Journal of Biological Macromolecules, 182,

–1819. https://doi.org/10.1016/j.ijbiomac.2021.05.170

Vishnu Priya, N., Vinitha, U. G., & Meenakshi Sundaram, M. (2021). Preparation of chitosan-based antimicrobial active

food packaging film incorporated with Plectranthus amboinicus essential oil. Biocatalysis and Agricultural

Biotechnology, 34(102021), 102021. https://doi.org/10.1016/j.bcab.2021.102021

Zhang, Y., Xie, J., Ellis, W. O., Li, J., Appaw, W. O., & Simpson, B. K. (2024). Bioplastic films from cassava peels:

Enzymatic transformation and film properties. Industrial Crops and Products, 213(118427), 118427. https://doi.

org/10.1016/j.indcrop.2024.118427

Zhou, Y., Wu, X., Chen, J., & He, J. (2021). Effects of cinnamon essential oil on the physical, mechanical, structural and

thermal properties of cassava starch-based edible films. International Journal of Biological Macromolecules, 184,

–583. https://doi.org/10.1016/j.ijbiomac.2021.06.067

Published

2024-08-20

Issue

Section

Ciencias Químicas