Coagulation and oxidation in the treatment of swine wastewater

Authors

  • Adrian David Vélez Zambrano Escuela Superior Politécnica Agropecuaria de Manabí “Manuel Félix López” ESPAM MFL. Carrera de Ingeniería Ambiental. Ecuador. https://orcid.org/0009-0001-1103-4789
  • Jorge Alessandro Zambrano Rosados Escuela Superior Politécnica Agropecuaria de Manabí “Manuel Félix López” ESPAM MFL. Carrera de Ingeniería Ambiental. Ecuador. https://orcid.org/0009-0006-3490-4093
  • Carlos Banchón Escuela Superior Politécnica Agropecuaria de Manabí “Manuel Félix López” ESPAM MFL. Carrera de Ingeniería Ambiental. Ecuador. https://orcid.org/0000-0002-0388-1988

DOI:

https://doi.org/10.33936/revbasdelaciencia.v9i3.7040

Keywords:

Ozone, Polyacrilamide, Wastewater, Aluminium polychloride, Swine wastes

Abstract

The present study addresses the management of waste generated by intensive pig farming, focusing on sustainable solutions for the treatment of swine wastewater through physico-chemical processes. The results demonstrated that the coagulation-flocculation process, using coagulants such as polyaluminum chloride (PAC) and flocculants like PAM, is highly effective in reducing wastewater turbidity, achieving a 100% removal with optimal concentrations. However, its effect on electrical conductivity (EC) and total solids (TS) was limited. Regarding advanced oxidation methods, the use of sodium hypochlorite and ozone was evaluated for their purification capacity. Ozone showed greater efficiency and stability in reducing EC, turbidity, and TS, achieving a 55.3% decrease in EC and total turbidity elimination in just four minutes of treatment. These findings highlight the potential of ozone as a more effective and faster option compared to sodium hypochlorite, which, while also effective, exhibited more variability in the parameters evaluated. In conclusion, the combination of coagulation-flocculation processes and advanced oxidation, particularly with ozone, offers a promising strategy to mitigate environmental contamination associated with pig production, improving wastewater quality and minimizing risks to human health and the environment.

Downloads

Download data is not yet available.

References

Babanova, S., Jones, J., Phadke, S., Lu, M., Angulo, C., Garcia, J., Carpenter, K., Cortese, R., Chen, S., Phan, T., & Bretschger, O. (2020). Continuous flow, large‐scale, microbial fuel cell system for the sustained treatment of swine waste. Water Environment Research, 92(1), 60-72. https://doi.org/10.1002/wer.1183

Banchón. (2024). Activated carbon-mediated advanced oxidation process for effective leachate treatment | International Journal of Environmental Science and Technology. https://link.springer.com/article/10.1007/s13762-024-05641-5

Banet, T., Massey, M. S., Zohar, I., Litaor, M. I., & Ippolito, J. A. (2020). Phosphorus removal from swine wastewater using aluminum-based water treatment residuals. Resources, Conservation & Recycling: X, 6, 100039. https://doi.org/10.1016/j.rcrx.2020.100039

Bazrafshan, E., Mostafapour, F. K., Farzadkia, M., Ownagh, K. A., & Mahvi, A. H. (2012). Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process. PLOS ONE, 7(6), e40108. https://doi.org/10.1371/journal.pone.0040108

Bidigare-Curtis, H. (2014). A New Approach to Ohio Pig Farming. Discussions, 10(3). http://www.inquiriesjournal.com/articles/966/a-new-approach-to-ohio-pig-farming

Blanco, D., Suárez, J., Jiménez, J., González, F., Álvarez, L. M., Cabeza, E., & Verde, J. (2015). Eficiencia del tratamiento de residuales porcinos en digestores de laguna tapada. Pastos y Forrajes, 38(4), 441-447.

Chen, R.-F., Wu, L., Zhong, H.-T., Liu, C.-X., Qiao, W., & Wei, C.-H. (2021). Evaluation of electrocoagulation process for high-strength swine wastewater pretreatment. Separation and Purification Technology, 272, 118900. https://doi.org/10.1016/j.seppur.2021.118900

Deng, L., Zheng, D., Zhang, J., Yang, H., Wang, L., Wang, W., He, T., & Zhang, Y. (2023). Treatment and utilization of swine wastewater – A review on technologies in full-scale application. Science of The Total Environment, 880, 163223. https://doi.org/10.1016/j.scitotenv.2023.163223

Devi, P., & Dalai, A. K. (2021). Implications of breakpoint chlorination on chloramines decay and disinfection by-products formation in brine solution. Desalination, 504, 114961. https://doi.org/10.1016/j.desal.2021.114961

Domingues, E., Fernandes, E., Gomes, J., & Martins, R. C. (2021). Advanced oxidation processes perspective regarding swine wastewater treatment. Science of The Total Environment, 776, 145958. https://doi.org/10.1016/j.scitotenv.2021.145958

Domingues, E., Lincho, J., Fernandes, M. J., Gomes, J., & Martins, R. C. (2023). Low-cost materials for swine wastewater treatment using adsorption and Fenton’s process. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-29677-1

El bied, O., Kessler, M., Terrero, M. A., Fechtali, T., Cano, A. F., & Acosta, J. A. (2021). Turbidity and Chemical Oxygen Demand Reduction from Pig Slurry through a Coagulation Flocculation Process. Agronomy, 11(11), Article 11. https://doi.org/10.3390/agronomy11112158

FAO. (2022). Agricultural production statistics 2000-2022. Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/3/cc9205en/cc9205en.pdf

Fragoso, R. A., Duarte, E. A., & Paiva, J. (2015). Contribution of Coagulation–Flocculation Process for a More Sustainable Pig Slurry Management. Water, Air, & Soil Pollution, 226(5), 131. https://doi.org/10.1007/s11270-015-2388-4

Gao, F.-Z., He, L.-Y., Chen, X., Chen, J.-L., Yi, X., He, L.-X., Huang, X.-Y., Chen, Z.-Y., Bai, H., Zhang, M., Liu, Y.-S., & Ying, G.-G. (2023). Swine farm groundwater is a hidden hotspot for antibiotic-resistant pathogenic Acinetobacter. ISME Communications, 3(1), 34. https://doi.org/10.1038/s43705-023-00240-w

Garzón Zúñiga, M. A., & Buelna, G. (2014). Caracterización de aguas residuales porcinas y su tratamiento por diferentes procesos en México. Revista internacional de contaminación ambiental, 30(1), 65-79.

González, R., González, J., Rosas, J. G., Smith, R., & Gómez, X. (2020). Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis. C — Journal of Carbon Research, 6(2), 43. https://doi.org/10.3390/c6020043

Henao, J. L. C., & Criollo, N. K. R. (2017). Evaluación del proceso de tratamiento de aguas residuales porcícolas en la colonia agrícola de mínima seguridad de Acacias. https://repository.usta.edu.co/bitstream/handle/11634/12384/2017juliethcort%C3%A9s.pdf?sequence=4

Hollas, C. E., Rodrigues, H. C., Bolsan, A. C., Venturin, B., Bortoli, M., Antes, F. G., Steinmetz, R. L. R., & Kunz, A. (2023). Swine manure treatment technologies as drivers for circular economy in agribusiness: A techno-economic and life cycle assessment approach. Science of The Total Environment, 857, 159494. https://doi.org/10.1016/j.scitotenv.2022.159494

Jin, J., El-Din, M. G., & Bolton, J. R. (2011). Assessment of the UV/Chlorine process as an advanced oxidation process. Water Research, 45(4), 1890-1896. https://doi.org/10.1016/j.watres.2010.12.008

Kim, H., Kwon, S., Han, S., Yu, M., Kim, J., Gong, S., & Colosimo, M. F. (2006). New ORP/pH based control strategy for chlorination and dechlorination of wastewater: Pilot scale application | Water Science & Technology | IWA Publishing. https://iwaponline.com/wst/article-abstract/53/6/145/11919/New-ORP-pH-based-control-strategy-for-chlorination?redirectedFrom=fulltext

Kornboonraksa, T., Lee, S., Lee, S., & Lee, H. (2009). On-line monitoring of floc formation in various flocculants for piggery wastewater treatment. Desalination and Water Treatment, 1(1), 248-258. https://doi.org/10.5004/dwt.2009.127

Lee, W.-C., & Chang, C.-C. (2022). Effectively Recycling Swine Wastewater by Coagulation–Flocculation of Nonionic Polyacrylamide. Sustainability, 14(3), Article 3. https://doi.org/10.3390/su14031742

López Fenández, S., Amaya Chávez, A., Serrato Cuevas, R., Gómez Tenorio, G., & Roa Morales, G. (2023). Life cycle inventory for an organic swine waste treatment system. Journal of Material Cycles and Waste Management, 25(2), 1153-1167. https://doi.org/10.1007/s10163-023-01606-x

Lourinho, G., Rodrigues & Brito, P. S. D. (2020). Recent advances on anaerobic digestion of swine wastewater. International Journal of Environmental Science and Technology, 17(12), 4917-4938. https://doi.org/10.1007/s13762-020-02793-y

Macauley, J., Qiang, Z., Adams, C., Surampalli, R., & Mormile, M. (2006). Disinfection of swine wastewater using chlorine, ultraviolet light and ozone—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0043135406001928?via%3Dihub

Maisonnave, R., Millares, P., y Lamelas, K. (2019). Buenas Prácticas de Manejo y Utilización de Efluentes Porcinos. https://www.magyp.gob.ar/sitio/areas/porcinos

Mosquera, A. M., Delgado, J. M., Ramón, A. A., Vásquez, J. E., & Peñuela, M. (2024). Evaluation of Biogas Production from Swine Manure Using a UASB Reactor (Upflow Anaerobic Sludge Blanket) with Long-Term Operation. Energies, 17(11), Article 11. https://doi.org/10.3390/en17112723

Novelo, M., Borges, C., Borges, V., Pérez, B., y Peraza, C. (2009). Estimación del potencial contaminante de las granjas porcinas y avícolas del estado de Yucatán. https://www.redalyc.org/articulo.oa?id=46713053002

Parra, W., y Zambrano, R. (2021). Evaluación del potencial de producción de biogás de las aguas residuales de una planta porcina mediante digestión anaeróbica.

Ramírez, J. P. R., y Rodríguez, R. V. (2017). Impactos ambientales por las actividades agropecuarias de Jalisco, México: Primera década del siglo XXI. Revista Estudios Ambientales - Environmental Studies Journal, 5(1), Article 1.

Semerena, R. I. E., Drucker, A. G., González, V. G., y Rueda, S. M. (2003). La industria porcina en Yucatán: un análisis de la generación de aguas residuales. Problemas del Desarrollo. Revista Latinoamericana de Economía, 34(135).

Xuan, F., Li, J., Azeem, M., Eida, M., Abbasi, M. W., Pan, S., & Yang, S. (2021). Ozone pretreatment to improve the physico-chemical and biological properties of livestock fecal water. Environmental Engineering and Management Journal, 20(11), Article 11. https://eemj.eu/index.php/EEMJ/article/view/4420

Yi, J., Chen, Z., Xu, D., Wu, D., & Howard, A. (2024). Preparation of a coagulant of polysilicate aluminum ferric from foundry dust and its coagulation performance in treatment of swine wastewater. Journal of Cleaner Production, 434, 140400. https://doi.org/10.1016/j.jclepro.2023.140400

Yoon, Y., Hwang, Y., Kwon, M., Jung, Y., Hwang, T.-M., & Kang, J.-W. (2014). Application of O3 and O3/H2O2 as post-treatment processes for color removal in swine wastewater from a membrane filtration system. Journal of Industrial and Engineering Chemistry, 20(5), 2801-2805. https://doi.org/10.1016/j.jiec.2013.11.010

Published

2024-12-09