ALMIDONES HIDRÓFOBOS
DOI:
https://doi.org/10.33936/revbasdelaciencia.v7i2.5189Palabras clave:
almidón, hidrofobización, unidad anhidroglucosa, grado de sustituciónResumen
Polímeros de origen natural como el almidón han sido vistos por muchos autores como una alternativa atractiva y viable como sustitutos de algunos polímeros sintéticos, ya que ellos y sus derivados resultan ser poco nocivos para el medio ambiente y su uso podría reducir la contaminación producida por polímeros derivados del petróleo. Sin embargo, debido a su carácter hidrófilo sus propiedades se ven comprometidas con el grado de humedad del ambiente, lo cual constituye una limitación muy importante a la hora de desarrollar productos derivados del mismo. Es por esta razón que se han desarrollado diferentes métodos de modificación química con la finalidad de convertirlo en un material hidrófobo, lo que facilita no solo obtener productos resistentes a la humedad, sino también a la degradación hidrolítica. Esto, además, permite la obtención de materiales más fáciles de moldear y amigables con el medio ambiente y, por lo tanto, útiles para la fabricación de utensilios. En esta revisión se presentan muchos de los avances obtenidos en las diferentes vías de modificación química dirigidas hacia la síntesis de almidones hidrófobos, en especial la obtención de almidones eterificados y esterificados, haciendo énfasis especialmente en la influencia de los medios de síntesis y las condiciones de reacción.
Descargas
Citas
Abdul Hadi, N., Wiege, B., Stabenau, S., Marefati, A., & Rayner, M. (2020). Comparison of Three Methods to Determine the Degree of Substitution of Quinoa and Rice Starch Acetates, Propionates, and Butyrates: Direct Stoichiometry, FTIR, and 1H-NMR. Foods, 9(1), 83. https://doi.org/10.3390/foods9010083
Aburto, J., Alric, I., & Borredon, E. (2005). Organic solvent‐free transesterification of various starches with lauric acid methyl ester and triacyl glycerides. Starch‐Stärke, 57(3‐4), 145-152. https://doi.org/10.1002/star.200400380
Aburto, J., Alric, I., Thiebaud, S., Borredon, E., Bikiaris, D., Prinos, J., & Panayiotou, C. (1999). Synthesis, characterization, and biodegradability of fatty‐acid esters of amylose and starch. Journal of Applied Polymer Science, 74(6), 1440-1451. https://doi.org/10.1002/(SICI)1097-4628(19991107)74:6<1440::AID- APP17>3.0.CO;2-V
Ačkar, Đ., Babić, J., Jozinović, A., Miličević, B., Jokić, S., Miličević, R., Rajič, M., & Šubarić, D. (2015). Starch modification by organic acids and their derivatives: A review. Molecules, 20(10), 19554-19570. https://doi.org/10.3390/molecules201019554
Ashogbon, A. O., & Akintayo, E. T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch‐Stärke, 66(1-2), 41-57. https://doi.org/10.1002/star.201300106
Baéz, M., Jiménez, E., Laredo, E., García-Álvarez, M., Martínez de Ilarduya, A., & López-Carrasquero, F. (2007). Comblike Complexes of Poly(itaconic acid) and Poly(mono methyl itaconate) and Alkyltrimethylamonium Cationic Surfactants. Polymer Bulletin, 58(3), 529-539. https://doi.org/10.1007/s00289-006-0688-y
Balsamo, V., López-Carrasquero, F., Laredo, E., Conto, K., Contreras, J., & Feijoo, J. L. (2011). Preparation and thermal stability of carboxymethyl starch/quaternary ammonium salts complexes. Carbohydrate Polymers, 83(4), 1680- 1689. https://doi.org/10.1016/j.carbpol.2010.10.025
Barrios, S. E., Giammanco, G., Contreras, J. M., Laredo, E., & López-Carrasquero, F. (2013). Characterization of esterified cassava starch with long alkyl side chains and different substitution degrees. International Journal of Biological Macromolecules, 59, 384-390. https://doi.org/10.1016/j.ijbiomac.2013.04.079
Bergel, B. F., Dias Osorio, S. D., da Luz, L. M., & Santana, R. M. C. (2018). Effects of hydrophobized starches on thermoplastic starch foams made from potato starch. Carbohydrate Polymers, 200, 106-114. https://doi.org/10.1016/j.carbpol.2018.07.047
Bergthaller, W., & Hollmann, J. (2007). Starch en H. Kamerling (Ed.), Comprehensive Glycoscience (pp. 579-612). Elseiver. https://doi.org/10.1016/B978-044451967-2/00139-2
Bien, F., Wiege, B., & Warwel, S. (2001). Hydrophobic modification of starch by alkali‐catalyzed addition of 1, 2‐ epoxyalkanes. Starch‐Stärke, 53(11), 555-559. https://doi.org/10.1002/1521-379X(200111)53:11<555::AID- STAR555>3.0.CO;2-G
Chen, Q., Yu, H., Wang, L., ul Abdin, Z., Chen, Y., Wang, J., Zhou, W., Yang, X., Khan, R., Zhang, H., & Chen, X. (2015). Recent progress in chemical modification of starch and its applications. Rsc Advances, 5(83), 67459- 67474. https://doi.org/10.1039/C5RA10849G
Chi, H., Xu, K., Xue, D., Song, C., Zhang, W., & Wang, P. (2007). Synthesis of dodecenyl succinic anhydride (DDSA) corn starch. Food Research International, 40(2), 232-238. https://doi.org/10.1016/j.foodres.2006.09.013
Contó, K., Balsamo, V., López-Carrasquero, F., & Feijoo, J. L. (2008). Modificación química de almidones carboximetilados con bromuro de hexaciltrimetilamonio. Revista Iberoamericana de Polímeros, 9(3), 197-200.
Contreras, M. (7 de octubre de 2020). Bolsas de almidón de maíz: la alternativa al plástico que hasta se puede compostar. El Comercio. https://elcomercio.pe/casa-y-mas/ideas-y-diseno/bolsas-de-almidon-de-maiz-la-alternativa-al- plastico-que-hasta-se-puede-compostar-ekolo-bolsas-de-plastico-medioambiente-noticia/
Contreras, J., Medina, D., Monsalve, M. (2022). Poliésteres como biomateriales. una revisión. Revista Bases de la Ciencia, 6(2), 48-71. https://doi.org/10.33936/rev_bas_de_la_ciencia.v%vi%i.4725 Recuperado de: https://revistas.utm.edu.ec/index.php/Basedelaciencia/article/view/4725
Cova, A., Sandoval, A. J., Balsamo, V., & Müller, A. J. (2010). The effect of hydrophobic modifications on the adsorption isotherms of cassava starch. Carbohydrate Polymers, 81(3), 660-667. https://doi.org/10.1016/j.carbpol.2010.03.028
Dandekar, P., Jain, R., Stauner, T., Loretz, B., Koch, M., Wenz, G., & Lehr, C. M. (2012). A hydrophobic starch polymer for nanoparticle‐mediated delivery of docetaxel. Macromolecular Bioscience, 12(2), 184-194. https://doi.org/10.1002/mabi.201100244
DiCYT (29 de abril de 2010). Plástico biodegradable hecho a base de almidón de maíz. Agencia Iberoamericana para la Difusión de la Ciencia y la Tecnología. https://www.dicyt.com/noticias/plastico-biodegradable-hecho-a-base- de-almidon-de-maiz
Egharevba, H. O. (2020). Chemical properties of starch and its application in the food industry en M. Emeje (Ed.), Chemical Properties of Starch (pp.1-26). IntechOpen. http://dx.doi.org/10.5772/intechopen.78119
Enríquez, M., Velasco, R., & Ortiz, V. (2012). Composición y procesamiento de películas biodegradables basadas en almidón. Biotecnología en el Sector Agropecuario y Agroindustrial, 10(1), 182 – 192.
Fang, J. M., Fowler, P. A., Sayers, C., & Williams, P. A. (2004). The chemical modification of a range of starches under aqueous reaction conditions. Carbohydrate Polymers, 55(3), 283-289. https://doi.org/10.1016/j.carbpol.2003.10.003
Funke, U., & Lindhauer, M. G. (2001). Effect of reaction conditions and alkyl chain lengths on the properties of hydroxyalkyl starch ethers. Starch‐Stärke, 53(11), 547-554. https://doi.org/10.1002/1521- 379X(200111)53:11<547::AID-STAR547>3.0.CO;2-C
Gradzielski, M., & Hoffmann, I. (2018). Polyelectrolyte-surfactant complexes (PESCs) composed of oppositely charged components. Current Opinion in Colloid & Interface Science, 35, 124-141. https://doi.org/10.1016/j.cocis.2018.01.017
Grote, C., & Heinze, T. (2005). Starch derivatives of high degree of functionalization 11: Studies on alternative acylation of starch with long-chain fatty acids homogeneously in N,N-dimethyl acetamide/LiCl. Cellulose, 12(4), 435- 444. https://doi.org/10.1007/s10570-005-2178-z
Guillot, S., Delsanti, M., Désert, S., & Langevin, D. (2003). Surfactant-induced collapse of polymer chains and monodisperse growth of aggregates near the precipitation boundary in carboxymethylcellulose− DTAB aqueous solutions. Langmuir, 19(2), 230-237. https://doi.org/10.1021/la0206561
Han, W. J., Dong, Y. Z., & Choi, H. J. (2017). Applications of water-soluble polymers in turbulent drag reduction. Processes, 5(2), 24. https://doi.org/10.3390/pr5020024
Hermawan, E., Rosyanti, L., Megasari, L., Sugih, A. K., & Muljana, H. (2015). Transesterification of sago starch using various fatty acid methyl esters in densified CO2. International Journal of Chemical Engineering and Applications, 6(3), 152-155. https://dx.doi.org/10.7763/IJCEA.2015.V6.471
Hong, J., Zeng, X. A., Brennan, C. S., Brennan, M., & Han, Z. (2016). Recent advances in techniques for starch esters
and the applications: A review. Foods, 5(3), 50. https://doi.org/10.3390/foods5030050
Huijbrechts, A. A., Huang, J., Schols, H. A., Van Lagen, B., Visser, G. M., Boeriu, C. G., & Sudhölter, E. J. (2007). 1‐ Allyloxy‐2‐hydroxy‐propyl‐starch: Synthesis and characterization. Journal of Polymer Science Part A: Polymer Chemistry, 45(13), 2734-2744. https://doi.org/10.1002/pola.22029
Huijbrechts, A. M., Desse, M., Budtova, T., Franssen, M. C., Visser, G. M., Boeriu, C. G., & Sudhölter, E. J. (2008). Physicochemical properties of etherified maize starches. Carbohydrate Polymers, 74(2), 170-184. https://doi.org/10.1016/j.carbpol.2008.02.001
Huijbrechts, A. M., Vermonden, T., Bogaert, P., Franssen, M. C., Visser, G. M., Boeriu, C. G., & Sudhölter, E. J. (2009). Optimization of the synthesis of 1-allyloxy-2-hydroxy-propyl-starch through statistical experimental design. Carbohydrate Polymers, 77(1), 25-31. https://doi.org/10.1016/j.carbpol.2008.11.037
Junistia, L., Sugih, A. K., Manurung, R., Picchioni, F., Janssen, L. P., & Heeres, H. J. (2008). Synthesis of higher fatty acid starch esters using vinyl laurate and stearate as reactants. Starch‐Stärke, 60(12), 667-675. https://doi.org/10.1002/star.200800025
Jyothi, A. N., Rajasekharan, K. N., Moorthy, S. N., & Sreekumar, J. (2005a). Synthesis and characterization of low DS succinate derivatives of cassava (Manihot esculenta Crantz) starch. Starch‐Stärke, 57(7), 319-324. https://doi.org/10.1002/star.200400374
Jyothi, A. N., Rajasekharan, K. N., Moorthy, S. N., & Sreekumar, J. (2005b). Microwave‐assisted synthesis and characterization of succinate derivatives of cassava (Manihot esculenta Crantz) starch. Starch‐Stärke, 57(11), 556-563. https://doi.org/10.1002/star.200500429
Khan, N., & Brettmann, B. (2018). Intermolecular interactions in polyelectrolyte and surfactant complexes in solution. Polymers, 11(1), 51. https://doi.org/10.3390/polym11010051
Kwakwa, V., & García Mora, A. (6 de abril de 2021). Los residuos plásticos son una amenaza creciente y una oportunidad desperdiciada. Banco Mundial Blogs. https://blogs.worldbank.org/es/voces/residuos-plasticos-creciente- amenaza-y-oportunidad-desperdiciada
Ledesma-Ugsiña, A., Dalgo-Flores, V., Flores-Fiallos, L., & Chango-Lescano, G. (2021). Bioplásticos de almidón de maíz y quinua para uso como envolturas alimenticias biodegradables. Dominio de las Ciencias, 7(4), 39-56.
Lochhead, R. (2017). The use of polymers in cosmetic products en K. Sakamoto, H. Lochhead, H. Maibach, & Y. Yamashita (Eds.), Cosmetic Science and Technology: Theoretical Principles and Applications (pp. 171-221). Elsevier.
López-Carrasquero, F., Giammanco, G., Díaz, A., Dávila, J., Torres, C., & Laredo, E. (2009). Synthesis, characterization and side chains crystallization of comb-like poly(p-n-alkylstyrene)s. Polymer Bulletin, 63(1), 69-78. https://doi.org/10.1007/s00289-009-0071-x
Masina, N., Choonara, Y. E., Kumar, P., du Toit, L. C., Govender, M., Indermun, S., & Pillay, V. (2017). A review of the chemical modification techniques of starch. Carbohydrate Polymers, 157, 1226-1236. https://doi.org/10.1016/j.carbpol.2016.09.094
Merta, J., Torkkeli, M., Ikonen, T., Serimaa, R., & Stenius, P. (2001). Structure of cationic starch (CS)/anionic surfactant complexes studied by small-angle X-ray scattering (SAXS). Macromolecules, 34(9), 2937-2946. https://doi.org/10.1021/ma001793c
Mesnager, J., Lambin, A., Quettier, C., Rataboul, F., & Pinel, C. (2010). Efficient telomerization of butadiene with starch in water: the role of the surfactant. Topics in Catalysis, 53(15), 1282-1284. https://doi.org/10.1007/s11244-010- 9583-8
Misman, M. A., Azura, A. R., & Hamid, Z. A. A. (2015). Physico-chemical properties of solvent based etherification of sago starch. Industrial Crops and Products, 65, 397-405. https://doi.org/10.1016/j.indcrop.2014.11.009
Mollega, S., Barrios, S. E., Feijoo, J. L., Contreras, J. M., Müller, A. J., & López-Carrasquero, F. (2011). Modificación química de almidón de yuca nativo mediante la reacción de carboximetilación en medio acuoso. Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 26(1), 117-128.
Muljana, H., Irene, C., Saptaputri, V., Arbita, E., Sugih, A. K., Heeres, H. J., & Picchioni, F. (2018). Synthesis of sago starch laurate in densified carbon dioxide. Polymer Engineering & Science, 58(3), 291-299. https://doi.org/10.1002/pen.24569
Muljana, H., van der Knoop, S., Keijzer, D., Picchioni, F., Janssen, L. P., & Heeres, H. J. (2010). Synthesis of fatty acid starch esters in supercritical carbon dioxide. Carbohydrate Polymers, 82(2), 346-354. https://doi.org/10.1016/j.carbpol.2010.04.067
Namazi, H., Fathi, F., & Dadkhah, A. (2011). Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles. Scientia Iranica, 18(3), 439-445. https://doi.org/10.1016/j.scient.2011.05.006
Naves, A. F., & Petri, D. F. (2005). The effect of molecular weight and degree of substitution on the interactions between carboxymethyl cellulose and cetyltrimethylammonium bromide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 254(1-3), 207-214. https://doi.org/10.1016/j.colsurfa.2004.12.006
Neelam K, Vijay S, & Lalit S. (2012). Various techniques for the modification of starch and the applications of its derivatives. International Research Journal of Pharmacy, 3(5), 25-31.
Neumann, U., Wiege, B., & Warwel, S. (2002). Synthesis of hydrophobic starch esters by reaction of starch with various carboxylic acid imidazolides. Starch‐Stärke, 54(10), 449-453. https://doi.org/10.1002/1521- 379X(200210)54:10<449::AID-STAR2222449>3.0.CO;2-R
Nita, L. E., Chiriac, A., Bercea, M., & Wolf, B. A. (2013). Synergistic behavior of poly (aspartic acid) and Pluronic F127 in aqueous solution as studied by viscometry and dynamic light scattering. Colloids and Surfaces B: Biointerfaces, 103, 544-549. https://doi.org/10.1016/j.colsurfb.2012.10.054
Otache, M. A., Duru, R. U., Achugasim, O., & Abayeh, O. J. (2021). Advances in the modification of starch via esterification for enhanced properties. Journal of Polymers and the Environment, 29(5), 1365-1379. https://doi.org/10.1007/s10924-020-02006-0
Park, S., Chung, M. G., & Yoo, B. (2004). Effect of octenylsuccinylation on rheological properties of corn starch pastes. Starch‐Stärke, 56(9), 399-406. https://doi.org/10.1002/star.200300274
Ptak, S., Zarski, A., & Kapusniak, J. (2020). The importance of ionic liquids in the modification of starch and processing of starch-based materials. Materials, 13(20), 4479. https://doi.org/10.3390/ma13204479
Rodríguez, H. (6 de septiembre de 2018). Carreteras fabricadas con plástico. National Geographic España.
https://www.nationalgeographic.com.es/ciencia/actualidad/carreteras-fabricadas-plastico_13133
Roy, J. C., Ferri, A., Giraud, S., Jinping, G., & Salaün, F. (2018). Chitosan–carboxymethylcellulose-based polyelectrolyte complexation and microcapsule shell formulation. International Journal of Molecular Sciences, 19(9), 2521. https://doi.org/10.3390/ijms19092521
Shah, N. N., Soni, N., & Singhal, R. S. (2018). Modification of proteins and polysaccharides using dodecenyl succinic anhydride: Synthesis, properties and applications—A review. International Journal of Biological Macromolecules, 107, 2224-2233. https://doi.org/10.1016/j.ijbiomac.2017.10.099
Shanks, R., & Kong, I. (2012). Thermoplastic starch en A. El-Sonbati (Ed.), Thermoplastic Elastomers (pp. 137-154). IntechOpen. http://doi.org/10.5772/2038
Song, X., He, G., Ruan, H., & Chen, Q. (2006). Preparation and properties of octenyl succinic anhydride modified early indica rice starch. Starch‐Stärke, 58(2), 109-117. https://doi.org/10.1002/star.200500444
Thitisomboon, W., Opaprakasit, P., Jaikaew, N., & Boonyarattanakalin, S. (2018). Characterizations of modified cassava starch with long chain fatty acid chlorides obtained from esterification under low reaction temperature and its PLA blending. Journal of Macromolecular Science, Part A, 55(3), 253-259. https://doi.org/10.1080/10601325.2018.1424551
Tiitu, M., Laine, J., Serimaa, R., & Ikkala, O. (2006). Ionically self-assembled carboxymethyl cellulose/surfactant complexes for antistatic paper coatings. Journal of Colloid and Interface Science, 301(1), 92-97. https://doi.org/10.1016/j.jcis.2006.04.072
Tolentino, A., Alla, A., Martínez de Ilarduya, A., & Muñoz-Guerra, S. (2011). Comb-like ionic complexes of pectinic and alginic acids with alkyltrimethylammonium surfactants. Carbohydrate Polymers, 86(2), 484-490. https://doi.org/10.1016/j.carbpol.2011.04.072
Valero-Valdivieso, M. F., Ortegón, Y., & Uscategui, Y. (2013). Biopolímeros: avances y perspectivas. Dyna, 80(181), 171-180.
Vanmarcke, A., Leroy, L., Stoclet, G., Duchatel-Crépy, L., Lefebvre, J. M., Joly, N., & Gaucher, V. (2017). Influence of fatty chain length and starch composition on structure and properties of fully substituted fatty acid starch esters. Carbohydrate Polymers, 164, 249-257. https://doi.org/10.1016/j.carbpol.2017.02.013
Verma, G., & Hassan, P. A. (2013). Self assembled materials: design strategies and drug delivery perspectives. Physical Chemistry Chemical Physics, 15(40), 17016-17028. https://doi.org/10.1039/C3CP51207J
Wang, J., Ren, F., Yu, J., Copeland, L., Wang, S., & Wang, S. (2019). Toward a better understanding of different dissolution behavior of starches in aqueous ionic liquids at room temperature. ACS omega, 4(6), 11312-11319. https://doi.org/10.1021/acsomega.9b00962
Wang, R., Yan, H., Ma, W., & Li, Y. (2016). Complex formation between cationic gemini surfactant and sodium carboxymethylcellulose in the absence and presence of organic salt. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 293-300. https://doi.org/10.1016/j.colsurfa.2016.09.023
Wang, X., Huang, L., Zhang, C., Deng, Y., Xie, P., Liu, L., & Cheng, J. (2020). Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydrate Polymers, 240, 116292. https://doi.org/10.1016/j.carbpol.2020.116292
Xidu, L., Xinling, X., Youquan, Z., & Quanliang, J. (2017). Cyclohexane assisting preparation of starch esterification in supercritical CO2. CIESC Journal, 68(6), 2526-2534. https://doi.org/10.11949/j.issn.0438-1157.20170060
Xie, S., Liu, Q., & Cui, S. (2005). Starch Modification and Applications en Cui, S. W. (Ed.), Food Carbohydrates. Chemistry, Physical Properties, and Applications (pp. 357-405). CRC press. https://doi.org/10.1201/9780203485286
Xie, W., & Wang, Y. (2011). Synthesis of high fatty acid starch esters with 1‐butyl‐3‐methylimidazolium chloride as a reaction medium. Starch‐Stärke, 63(4), 190-197. https://doi.org/10.1002/star.201000126
Xu, J., Andrews, T. D., & Shi, Y. C. (2020). Recent advances in the preparation and characterization of intermediately to highly esterified and etherified starches: a review. Starch‐Stärke, 72(3-4), 1900238. https://doi.org/10.1002/star.201900238
Zapata, D., Pujol, R., & Coda, F. (2012). Polímeros biodegradables: una alternativa de futuro a la sostenibilidad de medio ambiente. Técnica Industrial, 297, 76-80.
Zhou, J., Ren, L., Tong, J., Xie, L., & Liu, Z. (2009). Surface esterification of corn starch films: Reaction with dodecenyl succinic anhydride. Carbohydrate Polymers, 78(4), 888-893. https://doi.org/10.1016/j.carbpol.2009.07.017
Publicado
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.