TRANSFORMACIÓN DE BIOMASA LIGNOCELULÓSICA EN BIOCOMBUSTIBLE DE SEGUNDA GENERACIÓN: ESTADO DEL ARTE DEL PRETRATAMIENTO

Autores

DOI:

https://doi.org/10.33936/revbasdelaciencia.v7i3.4243

Palavras-chave:

biomasa lignocelulósica, biocombustible, bioenergía, pretratamiento

Resumo

El aumento en la emisión de gases contaminantes causado por las actividades antropogénicas derivadas de la utilización de combustibles fósiles, es una de los principales problemas ambientales al que se le está buscando solución mediante la implementación de energías alternativas, con el fin de minimizar los efectos del calentamiento global y brindar seguridad energética. El aprovechamiento de residuos es uno de estos enfoques, este propone la utilización de materiales de desecho para la creación de nuevos productos sin afectar los cultivos destinados a la alimentación u otros servicios de primera necesidad. Es por ello que en varias investigaciones se ha analizado la utilización de diferentes tipos de biomasas como fuente de energía renovable, debido a que son de fácil adquisición y pueden ser convertidas en combustibles. El objetivo del presente estudio fue analizar el estado del arte del uso de la biomasa lignocelulósica como materia prima para la obtención de biocombustibles de segunda generación a través de una revisión de la literatura de los últimos diez años. Se realizó la búsqueda del empleo de la misma como materia prima para su bioconversión a combustible de segunda generación, desde la identificación de la estructura y composición de la matriz lignocelulósica, pretratamientos y parámetros que influyen en su conversión, posible formación de subproductos de carácter inhibidor, producción de biocombustible en Latinoamérica y Ecuador, hasta las perspectivas futuras de su viabilidad. La revisión de la literatura destacó que la generación de biocombustible a partir de biomasa lignocelulósica es considerada como una alternativa a la demanda energética, siendo así una solución al aumento de la emisión de gases de efecto invernadero y a la generación de residuos.

Downloads

Não há dados estatísticos.

Referências

Apóstol Tom M. (2da edición). (2001). Aplicaciones del cálculo diferencial, Cálculo Volumen II Cálculo de funciones de Varias Variables y Algebra Lineal, con aplicaciones a las Ecuaciones Diferenciales y Probabilidades, 384-388. México, México: Editorial Reverte.

Álvarez, C. (2009). Biocombustibles: desarrollo histórico-tecnológico, mercados actuales y comercio internacional. Economía Informa, 359, 63–89.

Amiri, H., & Karimi, K. (2018). Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives. In Bioresource Technology (Vol. 270). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2018.08.117

Arora, R., Sharma, N. K., Kumar, S., & Sani, R. K. (2019). Lignocellulosic Ethanol: Feedstocks and Bioprocessing. In Bioethanol Production from Food Crops. Elsevier Inc. https://doi.org/10.1016/b978-0-12-813766-6.00009-6

Azizan, A., Jusri, N. A. A., Azmi, I. S., Abd Rahman, M. F., Ibrahim, N., & Jalil, R. (2022). Emerging lignocellulosic ionic liquid biomass pretreatment criteria/strategy of optimization and recycling short review with infrared spectroscopy analytical know-how. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2022.03.548

Bach, H., Mäkitie, T., Hansen, T., & Steen, M. (2021). Blending new and old in sustainability transitions: Technological alignment between fossil fuels and biofuels in Norwegian coastal shipping. Energy Research and Social Science, 74(March). https://doi.org/10.1016/j.erss.2021.101957

Baramee, S., Siriatcharanon, A. kavitch, Ketbot, P., Teeravivattanakit, T., Waeonukul, R., Pason, P., Tachaapaikoon, C., Ratanakhanokchai, K., & Phitsuwan, P. (2020). Biological pretreatment of rice straw with cellulase-free xylanolytic enzyme-producing Bacillus firmus K-1: Structural modification and biomass digestibility. Renewable Energy, 160, 555–563. https://doi.org/10.1016/j.renene.2020.06.061

Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 91–106. https://doi.org/10.1016/j.rser.2014.04.047

Bilal, M., Wang, Z., Cui, J., Ferreira, L. F. R., Bharagava, R. N., & Iqbal, H. M. N. (2020). Environmental impact of lignocellulosic wastes and their effective exploitation as smart carriers – A drive towards greener and eco-friendlier biocatalytic systems. Science of the Total Environment, 722. https://doi.org/10.1016/j.scitotenv.2020.137903

Brazil, O. A. V., Vilanova-Neta, J. L., Silva, N. O., Vieira, I. M. M., Lima, Á. S., Ruzene, D. S., Silva, D. P., & Figueiredo, R. T. (2019). Integral use of lignocellulosic residues from different sunflower accessions: Analysis of the production potential for biofuels. Journal of Cleaner Production, 221, 430–438. https://doi.org/10.1016/j.jclepro.2019.02.274

Cañadas-López, Á., Rade-Loor, D., Domínguez-Andrade, J. M., Vargas-Hernández, J. J., Molina-Hidrovo, C., Macías-Loor, C., & Wehenkel, C. (2017). Variation in seed production of Jatropha curcas L. accessions under tropical dry forest conditions in Ecuador. New Forests, 48(6), 785–799. https://doi.org/10.1007/s11056-017-9597-1

Choi, J. H., Jang, S. K., Kim, J. H., Park, S. Y., Kim, J. C., Jeong, H., Kim, H. Y., & Choi, I. G. (2019). Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment. Renewable Energy, 130, 952–960. https://doi.org/10.1016/j.renene.2018.05.052

Costa, F. F., Oliveira, D. T. de, Brito, Y. P., Rocha Filho, G. N. da, Alvarado, C. G., Balu, A. M., Luque, R., & Nascimento, L. A. S. do. (2020). Lignocellulosics to biofuels: An overview of recent and relevant advances. Current Opinion in Green and Sustainable Chemistry, 24, 21–25. https://doi.org/10.1016/j.cogsc.2020.01.001

Ge, X., Chang, C., Zhang, L., Cui, S., Luo, X., Hu, S., Qin, Y., & Li, Y. (2018). Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application. In Advances in Bioenergy (1st ed., Vol. 3). Elsevier Inc. https://doi.org/10.1016/bs.aibe.2018.03.002

Gill, M. K., Kocher, G. S., & Panesar, A. S. (2021). Optimization of acid-mediated delignification of corn stover, an agriculture residue carbohydrate polymer for improved ethanol production. Carbohydrate Polymer Technologies and Applications, 2(August 2020), 100029. https://doi.org/10.1016/j.carpta.2020.100029

Gómez, J. M. (2016). Analysis of the variation in the efficiency in the production of biofuels in Latin America. Estudios Gerenciales, 32(139), 120–126. https://doi.org/10.1016/j.estger.2016.01.001

Groves, C., Sankar, M., & Thomas, P. J. (2018). Second-generation biofuels: exploring imaginaries via deliberative workshops with farmers. Journal of Responsible Innovation, 5(2), 149–169. https://doi.org/10.1080/23299460.2017.1422926

Guerrero, A. B., & Muñoz, E. (2018). Life cycle assessment of second generation ethanol derived from banana agricultural waste: Environmental impacts and energy balance. Journal of Cleaner Production, 174, 710–717. https://doi.org/10.1016/j.jclepro.2017.10.298

Gundupalli, M. P., Anne Sahithi, S. T., Jayex, E. P., Asavasanti, S., Yasurin, P., Cheng, Y. S., & Sriariyanun, M. (2022). Combined effect of hot water and deep eutectic solvent (DES) pretreatment on a lignocellulosic biomass mixture for improved saccharification efficiency. Bioresource Technology Reports, 17(February), 100986. https://doi.org/10.1016/j.biteb.2022.100986

Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93. https://doi.org/10.1016/j.rser.2013.06.033

Haldar, D., & Purkait, M. K. (2021). A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere, 264, 128523. https://doi.org/10.1016/j.chemosphere.2020.128523

Hilbert, J. A., & Caratori, L. (2021). El potencial de los biocombustibles argentinos para contribuir al cumplimiento de las contribuciones de Argentina en el marco del Acuerdo de París. Ministerio de Agricultura, Ganadería y Pesca. Presidencia de La Nación, July.

Hoang, A. T., Nižetić, S., Ong, H. C., Mofijur, M., Ahmed, S. F., Ashok, B., Bui, V. T. V., & Chau, M. Q. (2021). Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere, 281(May). https://doi.org/10.1016/j.chemosphere.2021.130878

Huang, C., Lin, W., Lai, C., Li, X., Jin, Y., & Yong, Q. (2019). Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues. Bioresource Technology, 285(March), 121355. https://doi.org/10.1016/j.biortech.2019.121355

Islam, M. K., Wang, H., Rehman, S., Dong, C., Hsu, H. Y., Lin, C. S. K., & Leu, S. Y. (2020). Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery. Bioresource Technology, 298, 122558. https://doi.org/10.1016/j.biortech.2019.122558

Jin, K., Liu, X., Jiang, Z., Tian, G., Yang, S., Shang, L., & Ma, J. (2019). Delignification kinetics and selectivity in poplar cell wall with acidified sodium chlorite. Industrial Crops and Products, 136(January), 87–92. https://doi.org/10.1016/j.indcrop.2019.04.067

Karimi, K. (2015). Lignocellulose-Based Bioproducts (Vol. 1). https://doi.org/10.1007/978-3-319-14033-9

Karimi, K., & Taherzadeh, M. J. (2016). A critical review on analysis in pretreatment of lignocelluloses: Degree of polymerization, adsorption/desorption, and accessibility. Bioresource Technology, 203, 348–356. https://doi.org/10.1016/j.biortech.2015.12.035

Khan, M. U., Usman, M., Ashraf, M. A., Dutta, N., Luo, G., & Zhang, S. (2022). A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and Limitations. Chemical Engineering Journal Advances, 10(November 2021), 100263. https://doi.org/10.1016/j.ceja.2022.100263

Khuenkaeo, N., & Tippayawong, N. (2020). Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chemical Engineering Communications, 207(2), 153–160. https://doi.org/10.1080/00986445.2019.1574769

Kikas, T., Tutt, M., Raud, M., Alaru, M., Lauk, R., & Olt, J. (2016). Basis of energy crop selection for biofuel production: Cellulose vs. lignin. International Journal of Green Energy, 13(1), 49–54. https://doi.org/10.1080/15435075.2014.909359

Kumar, A., & Chandra, R. (2020). Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon, 6(2), e03170. https://doi.org/10.1016/j.heliyon.2020.e03170

Kumar, P. V., & Sulaiman, Z. (2016). Use of synthetic fusion gene to produce biodiesel from lignocellulosic biomass. Biofuels, 7(2), 191–200. https://doi.org/10.1080/17597269.2015.1123984

Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90(May 2017), 877–891. https://doi.org/10.1016/j.rser.2018.03.111

Li, X., Shi, Y., Kong, W., Wei, J., Song, W., & Wang, S. (2022). Improving enzymatic hydrolysis of lignocellulosic biomass by bio-coordinated physicochemical pretreatment—A review. Energy Reports, 8, 696–709. https://doi.org/10.1016/j.egyr.2021.12.015

Magalhães, A. I., de Carvalho, J. C., de Melo Pereira, G. V., Karp, S. G., Câmara, M. C., Medina, J. D. C., & Soccol, C. R. (2019). Lignocellulosic biomass from agro-industrial residues in South America: current developments and perspectives. Biofuels, Bioproducts and Biorefining, 13(6), 1505–1519. https://doi.org/10.1002/bbb.2048

Mahmood, H., Moniruzzaman, M., Iqbal, T., & Khan, M. J. (2019). Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Current Opinion in Green and Sustainable Chemistry, 20, 18–24. https://doi.org/10.1016/j.cogsc.2019.08.001

Mankar, A. R., Pandey, A., Modak, A., & Pant, K. K. (2021). Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334(March), 125235. https://doi.org/10.1016/j.biortech.2021.125235

Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550. https://doi.org/10.1016/j.pecs.2012.02.002

Ministerio de Electricidad y Energía Renovable. (2016). Energía Verde para Galápagos Inagotable, Limpia y Segura. 22. https://www.undp.org/content/dam/ecuador/docs/documentos proyectos ambiente/pnud_ec REVISTA ENERGIA VERDE PARA GALAPAGOS-ilovepdf-compressed.pdf

Mulakhudair, A. R., Hanotu, J., & Zimmerman, W. (2017). Exploiting ozonolysis-microbe synergy for biomass processing: Application in lignocellulosic biomass pretreatment. Biomass and Bioenergy, 105, 147–154. https://doi.org/10.1016/j.biombioe.2017.06.018

Muñoz Mayorga, M., Herrera Orozco, I., Lechón Pérez, Y., Caldés Gomez, N., & Iglesias Martínez, E. (2018). Environmental Assessment of Electricity Based on Straight Jatropha Oil on Floreana Island, Ecuador. Bioenergy Research, 11(1), 123–138. https://doi.org/10.1007/s12155-017-9883-y

Mussatto, S. I., Yamakawa, C. K., van der Maas, L., & Dragone, G. (2021). New trends in bioprocesses for lignocellulosic biomass and CO2 utilization. Renewable and Sustainable Energy Reviews, 152(June), 111620. https://doi.org/10.1016/j.rser.2021.111620

Muthukumarappan, K., & Swamy, G. J. (2020). Bioconversions in extrusion cooking. In Extrusion Cooking. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815360-4.00014-6

Naciones Unidas. (2015). Memoria del Secretario General sobre la labor de la Organización. Naciones Unidas, 1(1), 1–88. https://undocs.org/es/A/70/1

Narváez C., R. A., Ramírez, V., Chulde, D., Espinoza, S., & López-Villada, J. (2015). Microwave Pyrolysis Process Potential of Waste Jatropha Curcas Seed Cake. Renewable Energy in the Service of Mankind, 1, 91–100. https://doi.org/10.1007/978-3-319-17777-9

Ortiz-Ulloa, J. A., Abril-González, M. F., Pelaez-Samaniego, M. R., & Zalamea-Piedra, T. S. (2021). Biomass yield and carbon abatement potential of banana crops (Musa spp.) in Ecuador. Environmental Science and Pollution Research, 28(15), 18741–18753. https://doi.org/10.1007/s11356-020-09755-4

Parisi, C. (2018). Biorefineries distribution in the EU. Publications Office of the European Union, JRC113216, 1–8. https://publications.jrc.ec.europa.eu/repository/handle/JRC113216

Pazmiño-Hernandez, M., Moreira, C. M., & Pullammanappallil, P. (2019). Feasibility assessment of waste banana peduncle as feedstock for biofuel production. Biofuels, 10(4), 473–484. https://doi.org/10.1080/17597269.2017.1323321

Pérez-Arévalo, J. J., & Velázquez-Martí, B. (2018). Evaluation of pruning residues of Ficus benjamina as a primary biofuel material. Biomass and Bioenergy, 108(November 2017), 217–223. https://doi.org/10.1016/j.biombioe.2017.11.017

Presidencia del Ecuador. (2012). Decreto Ejecutivo No1303. 1831.

Qian, E. W. (2013). Pretreatment and Saccharification of Lignocellulosic Biomass. In Research Approaches to Sustainable Biomass Systems. Elsevier. https://doi.org/10.1016/B978-0-12-404609-2.00007-6

Randhawa, K. S., Relph, L. E., Armstrong, M. C., & Rahman, P. K. S. M. (2017). Biofuel production: tapping into microalgae despite challenges. Biofuels, 8(2), 261–271. https://doi.org/10.1080/17597269.2016.1224290

Rapado, P., Faba, L., & Ordóñez, S. (2021). Influence of delignification and reaction conditions in the aqueous phase transformation of lignocellulosic biomass to platform molecules. Bioresource Technology, 321(December 2020). https://doi.org/10.1016/j.biortech.2020.124500

Raud, M., Kikas, T., Sippula, O., & Shurpali, N. J. (2019). Potentials and challenges in lignocellulosic biofuel production technology. Renewable and Sustainable Energy Reviews, 111(May), 44–56. https://doi.org/10.1016/j.rser.2019.05.020

Rey-Porras, K. D., Leguizamón-Nonsoque, G. M., González-LaRotta, E. C., & Becerra-Fernández, M. (2021). Análisis de brechas del sector de biocombustibles en Colombia. Inventum, 16(30), 61–90. https://doi.org/10.26620/uniminuto.inventum.16.30.2021.61-90

Rojas-Sossa, J. P., Zhong, Y., Valenti, F., Blackhurst, J., Marsh, T., Kirk, D., Fang, D., Dale, B., & Liao, W. (2019). Effects of ammonia fiber expansion (AFEX) treated corn stover on anaerobic microbes and corresponding digestion performance. Biomass and Bioenergy, 127(June), 105263. https://doi.org/10.1016/j.biombioe.2019.105263

Salinas Callejas, E., & Gasca Quezada, V. (2009). Los biocombustibles. El Cotidiano, 16(100), 75–82.

Santana, G. C. de S. (2021). The goals of the National Biodiesel Program: between planning and implementation. Ambiente & Sociedade, 24. https://doi.org/10.1590/1809-4422asoc20200088r2vu2021l5ao

Sarker, T. R., Pattnaik, F., Nanda, S., Dalai, A. K., Meda, V., & Naik, S. (2021). Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere, 284(June), 131372. https://doi.org/10.1016/j.chemosphere.2021.131372

SENECYT. (2014). Ecuador presenta su primera biorrefinería con el cambio de la matriz energética y productiva en la mira. https://www.educacionsuperior.gob.ec/ecuador-presenta-su-primera-biorrefineria-con-el-cambio-de-la-matriz-energetica-y-productiva-en-la-mira/#:~:text=Se trata del Proyecto RESETA,más representativos a escala nacional.

Sharma, S., Kundu, A., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2020). Sustainable environmental management and related biofuel technologies. Journal of Environmental Management, 273(July), 111096. https://doi.org/10.1016/j.jenvman.2020.111096

Soltanian, S., Aghbashlo, M., Almasi, F., Hosseinzadeh-Bandbafha, H., Nizami, A. S., Ok, Y. S., Lam, S. S., & Tabatabaei, M. (2020). A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Conversion and Management, 212(February), 112792. https://doi.org/10.1016/j.enconman.2020.112792

Srivastava, N., Mishra, K., Srivastava, M., Srivastava, K. R., Gupta, V. K., Ramteke, P. W., & Mishra, P. K. (2019). Role of compositional analysis of lignocellulosic biomass for efficient biofuel production. In New and Future Developments in Microbial Biotechnology and Bioengineering: From Cellulose to Cellulase: Strategies to Improve Biofuel Production. Elsevier B.V. https://doi.org/10.1016/B978-0-444-64223-3.00003-5

Susheel, K. (2018). Lignocellulosic Composite Materials. https://doi.org/10.1007/978-3-319-68696-7_6

Takada, M., Chandra, R., Wu, J., & Saddler, J. N. (2020). The influence of lignin on the effectiveness of using a chemithermomechanical pulping based process to pretreat softwood chips and pellets prior to enzymatic hydrolysis. Bioresource Technology, 302(January), 122895. https://doi.org/10.1016/j.biortech.2020.122895

Toogood, H. S., & Scrutton, N. S. (2018). Retooling microorganisms for the fermentative production of alcohols. Current Opinion in Biotechnology, 50, 1–10. https://doi.org/10.1016/j.copbio.2017.08.010

Vasaki, M., Sithan, M., Ravindran, G., Paramasivan, B., Ekambaram, G., & Karri, R. R. (2022). Biodiesel production from lignocellulosic biomass using Yarrowia lipolytica. Energy Conversion and Management: X, 13(August 2021), 100167. https://doi.org/10.1016/j.ecmx.2021.100167

Vega-Quezada, C., Blanco, M., & Romero, H. (2017). Synergies between agriculture and bioenergy in Latin American countries: A circular economy strategy for bioenergy production in Ecuador. New Biotechnology, 39, 81–89. https://doi.org/10.1016/j.nbt.2016.06.730

Velazquez-Marti, B., Pérez-Pacheco, S., Gaibor-Chávez, J., & Wilcaso, P. (2016). Modeling of Production and Quality of Bioethanol Obtained from Sugarcane Fermentation Using Direct Dissolved Sugars Measurements. Energies, 9(5). https://doi.org/10.3390/en9050319

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3

Xu, H., Peng, J., Kong, Y., Liu, Y., Su, Z., Li, B., Song, X., Liu, S., & Tian, W. (2020). Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: A review. Bioresource Technology, 310(March), 123416. https://doi.org/10.1016/j.biortech.2020.123416

Xu, N., Liu, S., Xin, F., Zhou, J., Jia, H., Xu, J., Jiang, M., & Dong, W. (2019). Biomethane production from lignocellulose: Biomass recalcitrance and its impacts on anaerobic digestion. In Frontiers in Bioengineering and Biotechnology (Vol. 7, Issue AUG). https://doi.org/10.3389/fbioe.2019.00191

Yao, Y. (2016). Leading pretreatments for enhancing the degradability of lignocellulosic wastes and the final products. Environmental Technology Reviews, 5(1), 103–111. https://doi.org/10.1080/21622515.2016.1253791

Yiin, C. L., Yap, K. L., Ku, A. Z. E., Chin, B. L. F., Lock, S. S. M., Cheah, K. W., Loy, A. C. M., & Chan, Y. H. (2021). Recent advances in green solvents for lignocellulosic biomass pretreatment: Potential of choline chloride (ChCl) based solvents. Bioresource Technology, 333(March), 125195. https://doi.org/10.1016/j.biortech.2021.125195

Yoon, L. W., Rafi, I. S., & Ngoh, G. C. (2022). Feasibility of eliminating washing step in bioethanol production using deep eutectic solvent pretreated lignocellulosic substrate. Chemical Engineering Research and Design, 179, 257–264. https://doi.org/10.1016/j.cherd.2022.01.031

Yousuf, A., Pirozzi, D., & Sannino, F. (2019). Fundamentals of lignocellulosic biomass. In Lignocellulosic Biomass to Liquid Biofuels. INC. https://doi.org/10.1016/B978-0-12-815936-1.00001-0

Yu, I. K. M., Chen, H., Abeln, F., Auta, H., Fan, J., Budarin, V. L., Clark, J. H., Parsons, S., Chuck, C. J., Zhang, S., Luo, G., & Tsang, D. C. W. (2020). Chemicals from lignocellulosic biomass: A critical comparison between biochemical, microwave and thermochemical conversion methods. Critical Reviews in Environmental Science and Technology, 0(0), 1–54. https://doi.org/10.1080/10643389.2020.1753632.

Publicado

2023-01-03

Edição

Seção

Ciencias Químicas