Revisión sistemática de la literatura de los sistemas de recomendación de contenidos educativos
DOI:
https://doi.org/10.33936/isrtic.v4i2.2770Keywords:
Recommendation systems, content, higher educationAbstract
At present, Content-Based Recommendation System (RS) contribute to the aim of providing teachers with more support tools for competence-based teaching, especially in higher education.This research presents the initial phase towards the development of RS based on educational contents and personalized learning paths. The literature review was carried out by exploring the central topic in specialized technology databases, making an analysis in a systematic way, looking for information to serve as a basis, analysing the most relevant points such as trends and the best methods and practices used in the development of an RS.
Downloads
References
Preliminary Study of State of the art”. En: 2019 XIV Latin American Conference on Learning
Technologies (LACLO). Oct. de 2019, págs. 231-236. doi: 10.1109/LACLO49268.2019.00047.
[2] M. Hassan y M. Hamada. “Smart media-based context-aware recommender systems for learning: A
conceptual framework”. En: 2017 16th International Conference on Information Technology Based
Higher Education and Training (ITHET). Jul. de 2017, págs. 1-4. doi: 10.1109/ITHET.2017.
8067805.
[3] V. Garg y R. Tiwari. “Hybrid massive open online course (MOOC) recommendation system using
machine learning”. es. En: (ene. de 2016). Publisher: IET Digital Library, 11 (5 .)-11 (5 .) doi:
10.1049/cp.2016.1479.
[4] Clara Inés Peña y col. “Un sistema de tutoría inteligente adaptativo considerando estilos de apren-
dizaje”. es. En: Revista UIS Ingenierías 1.2 (nov. de 2002). Number: 2, págs. 17-29. issn: 2145-8456.
[5] Demetrio A. Ovalle, Oscar M. Salazar y Néstor D. Duque. “Modelo de Recomendación Personali-
zada en Cursos Virtuales basado en Computación Ubicua y Agentes Inteligentes”. En: Información
tecnológica 25.6 (2014). Publisher: Centro de Información Tecnológica, págs. 131-142. issn: 0718-
0764. doi: 10.4067/S0718-07642014000600016.
[6] L. Zhuhadar y col. “Multi-model Ontology-Based Hybrid Recommender System in E-learning Do-
main”. En: 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Inte-
lligent Agent Technology. Vol. 3. Sep. de 2009, págs. 91-95. doi: 10.1109/WI-IAT.2009.238.
[7] Paula Andrea Rodriguez Marín y col. “Modelo multi-agente para recomendación híbrida de objetos
de aprendizaje.” Inglés. En: Revista Virtual Universidad Católica del Norte, núm. 40, 40 (dic. de
2013), págs. 96-110. issn: 0124-5821.
[8] Beatriz Fernández Reuter y Elena Durán. “Framework de recomendación automática
de contenidos en foros de discusión para entornos de e-learning”. En: Proceedings of the 7th
Euro American Conference on Telematics and Information Systems. EATIS ’14. New York, NY,
USA: Association for Computing Machinery, abr. de 2014, págs. 1-2. isbn: 978-1-4503-2435-9. doi:
10.1145/2590651.2590689.
[9] D. Yanhui y col. “A Group Recommender System for Online Course Study”. En: 2015 7th Interna-
tional Conference on Information Technology in Medicine and Education (ITME). Nov. de 2015,
págs. 318-320. doi: 10.1109/ITME.2015.99.
[10] M. H. Ansari y col. “CodERS: A hybrid recommender system for an E-learning system”. En: 2016
2nd International Conference of Signal Processing and Intelligent Systems (ICSPIS). Dic. de 2016,
págs. 1-5. doi: 10.1109/ICSPIS.2016.7869884.
[11] N. L. Adam y col. “Preliminary study on educational recommender system”. En: 2017 IEEE
Conference on e-Learning, e-Management and e-Services (IC3e). Nov. de 2017, págs. 97-101. doi:
10.1109/IC3e.2017.8409245.
[12] T. Saito e Y. Watanobe. “Learning Path Recommender System based on Recurrent Neural Net-
work”. En: 2018 9th International Conference on Awareness Science and Technology (iCAST).
ISSN: 2325-5994. Sep. de 2018, págs. 324-329. doi: 10.1109/ICAwST.2018.8517231.
[13] Yonghong Tian y col. “College Library Personalized Recommendation System Based on Hybrid Re-
commendation Algorithm”. en. En: Procedia CIRP. 11th CIRP Conference on Industrial Product-
Service Systems 83 (ene. de 2019), págs. 490-494. issn: 2212-8271. doi: 10.1016/j.procir.2019.
04.126.
[14] Noor Ifada y col. “Enhancing the Performance of Library Book Recommendation System by Em-
ploying the Probabilistic-Keyword Model on a Collaborative Filtering Approach”. en. En: Procedia
Computer Science. The 4th International Conference on Computer Science and Computational
Intelligence (ICCSCI 2019) : Enabling Collaboration to Escalate Impact of Research Results for
Society 157 (ene. de 2019), págs. 345-352. issn: 1877-0509. doi: 10.1016/j.procs.2019.08.176.
[15] A. Slim y col. “An Automated Framework to Recommend A Suitable Academic Program, Course
and Instructor”. En: 2019 IEEE Fifth International Conference on Big Data Computing Service
and Applications (BigDataService). Abr. de 2019, págs. 145-150. doi: 10.1109/BigDataService.
2019.00026.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Luis Daniel Álava

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles submitted to this journal for publication will be released for open access under a Creative Commons Attribution Non-Commercial No Derivative Works licence (http://creativecommons.org/licenses/by-nc-nd/4.0).
The authors retain copyright, and are therefore free to share, copy, distribute, perform and publicly communicate the work under the following conditions: Acknowledge credit for the work specified by the author and indicate if changes were made (you may do so in any reasonable way, but not in a way that suggests that the author endorses your use of his or her work. Do not use the work for commercial purposes. In case of remixing, transformation or development, the modified material may not be distributed.



