Artificial Intelligence Requirements Specification in the Development of Software Products

Authors

  • Pablo Fernando Ordoñez Ordoñez Universidad Nacional de Loja, Facultad de la energía, las industrias y los recursos naturales no renovables, Carrera de Computación, Ecuador, Loja. https://orcid.org/0000-0001-8079-7694
  • Yamilka Valeria Erazo Aleaga Universidad Nacional de Loja, Facultad de la energía, las industrias y los recursos naturales no renovables, Carrera de Computación, Ecuador, Loja. https://orcid.org/0009-0003-2742-0929

DOI:

https://doi.org/10.33936/isrtic.v8i2.7147

Keywords:

IEEE 830, AI Requirements, generative AI, SRS, GPEI

Abstract

In the development of current technologies involving artificial intelligence (AI), requirements specification becomes critically important to ensure that systems meet functional, ethical and performance expectations from the early stages of the process. However, the absence of clear guidelines for the AI requirements specification of a system can lead to poor specification, affecting the quality and effectiveness of the software. Therefore, this paper proposes a formal procedure for integrating AI requirements into the software development process, using the IEEE 830 standard as the basis for the specification. This was developed in 2 phases, making use of different methodologies: Barbara Kitchenham's Systematic Literature Review (SLR) and GPEI, respectively. The first phase consisted of conducting an SLR using Parsifal to discover and analyse current practices for the integration of AI requirements into the software development process, as well as for the specification of these requirements.  The second phase adapted the IEEE 830 standard for AI requirements specification using the GPEI methodology for generative AI interaction. The results showed that, for the most part, software projects integrating AI do not have adequate AI requirements specifications, and in response, a template based on the IEEE 830 standard was designed to guide this process, which includes two tables for AI requirements specification, developed with generative AI and empirical analysis.

Downloads

Download data is not yet available.

References

Abad, Z. S. H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G., & Schneider, K. (2017). What Works Better? A Study of Classifying Requirements. Proceedings - 2017 IEEE 25th International Requirements Engineering Conference, RE 2017, 496–501. https://doi.org/10.1109/RE.2017.36

Abdullah, R. W., Ahmad, S., Asmai, S. A., Lee, S. W., & Zain, Z. M. (2021). Research Efforts and Challenges in Crowd-based Requirements Engineering: A Review. International Journal of Advanced Computer Science and Applications, 12(9), 395–402. https://doi.org/10.14569/IJACSA.2021.0120945

Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L. C., & Traynor, M. (2020). Automated demarcation of requirements in textual specifications: a machine learning-based approach. Empirical Software Engineering, 25(6), 5454–5497. https://doi.org/10.1007/s10664-020-09864-1

Acevedo-Castiblanco, J.-A., Suárez-Barón, M.-J., & Gonzalez-Sanabriaz, J.-S. (2023). Categorización e integración de columnas de opinión y contenido de páginas web aplicando técnicas de Procesamiento de Lenguaje Natural Categorization and Integration of Opinion Columns Content in Web Pages Applying Natural Language Processing Techniques Cómo citar. Artículo de Investigación Ingeniería y Competitividad, 25(3), 25. https://doi.org/10.25100/iyc.v25i3.13220

Ahmad, K., Abdelrazek, M., Arora, C., Grundy, J., & Bano, M. (2023). Requirements Elicitation and Modelling of Artificial Intelligence Systems: An Empirical Study. http://arxiv.org/abs/2302.06034

Ahmed, S., Ahmed, A., & Eisty, N. U. (2022). Automatic Transformation of Natural to Unified Modeling Language: A Systematic Review. https://doi.org/10.1109/SERA54885.2022.9806783

Albán, H., & Franco Ortega, A. O. (2024). Manual de buenas prácticas para el desarrollo de software apoyado en inteligencia artificial para estudiantes de la Carrera de Software de la Universidad Estatal de Bolívar, período 2023-2024.

Althar, R. R., & Samanta, D. (2021). The realist approach for evaluation of computational intelligence in software engineering. Innovations in Systems and Software Engineering, 17(1), 17–27. https://doi.org/10.1007/s11334-020-00383-2

Anish, P. R., Sainani, A., Ahmed, A., & Ghaisas, S. (2019). Implementation-centric classification of business rules from documents. Proceedings - 2019 IEEE 27th International Requirements Engineering Conference Workshops, REW 2019, 227–233. https://doi.org/10.1109/REW.2019.00047

Asaad, J., & Avksentieva, E. (2023). Review of ways to apply machine learning methods in software engineering. E3S Web of Conferences, 449. https://doi.org/10.1051/e3sconf/202344907018

Barletta, V. S., Caivano, D., Gigante, D., & Ragone, A. (2023). A Rapid Review of Responsible AI frameworks: How to guide the development of ethical AI. ACM International Conference Proceeding Series, 358–367. https://doi.org/10.1145/3593434.3593478

de las Pueblas Encinas, G., & Sánchez Escribano, M. (2019). Definición de Requisitos Funcionales bajo Especificación IEEE para un Sistema de Ingeniería. Universidad Politécnica de Madrid.

Devine, P., Koh, Y. S., & Blincoe, K. (2023). Evaluating software user feedback classifier performance on unseen apps, datasets, and metadata. Empirical Software Engineering, 28(2). https://doi.org/10.1007/s10664-022-10254-y

Franch, X. (2021). Data-Driven Requirements Engineering: A Guided Tour. Communications in Computer and Information Science, 1375, 83–105. https://doi.org/10.1007/978-3-030-70006-5_4

Franch, X., Seyff, N., Oriol, M., Fricker, S., Groher, I., Vierhauser, M., & Wimmer, M. (2020). Towards Integrating Data-Driven Requirements Engineering into the Software Development Process: A Vision Paper. In N. Madhavji, L. Pasquale, A. Ferrari, & S. Gnesi (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12045, pp. 135–142). Springer International Publishing. https://doi.org/10.1007/978-3-030-44429-7

Georgievski, I. (2023). Conceptualising Software Development Lifecycle for Engineering AI Planning Systems. Proceedings - 2023 IEEE/ACM 2nd International Conference on AI Engineering - Software Engineering for AI, CAIN 2023, 88–89. https://doi.org/10.1109/CAIN58948.2023.00019

Guevara, J. D. C., & Ponjuán, D. T. (2022). Methodology proposal for specifying records management requirements from requirements engineering. Investigacion Bibliotecologica, 36(91), 33–48. https://doi.org/10.22201/iibi.24488321xe.2022.91.58555

Guizzardi, R., Amaral, G., Guizzardi, G., & Mylopoulos, J. (2023). An ontology-based approach to engineering ethicality requirements. Software and Systems Modeling, 22(6), 1897–1923. https://doi.org/10.1007/s10270-023-01115-3

Ijaz, K. B., Inayat, I., & Allah Bukhsh, F. (2019). Non-functional Requirements Prioritization: A Systematic Literature Review. Proceedings - 45th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2019, 379–386. https://doi.org/10.1109/SEAA.2019.00064

Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. https://www.researchgate.net/publication/302924724

Laato, S., Mäntymäki, M., Minkkinen, M., & Dennehy, D. (2024). Machine Learning System Development in Information Systems Development Praxis. Communications of the Association for Information Systems, 54. https://doi.org/10.17705/1cais.05406

Li, M., Shi, L., Yang, Y., & Wang, Q. (2020). A Deep Multitask Learning Approach for Requirements Discovery and Annotation from Open Forum. Proceedings - 2020 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020, 336–348. https://doi.org/10.1145/3324884.3416627

Llerena Ocaña, L. A., Viscaino Naranjo, F. A., Culque Topanta, W. V., & Baño Naranjo, F. P. (2023). Estudio neutrosófico sobre la afectación de la inteligencia artificial en el desarrollo de software. Neutrosophic Computing and Machine Learning, 29, 295–304.

Morales-Ramirez, I., Kifetew, F. M., & Perini, A. (2019). Speech-acts based analysis for requirements discovery from online discussions. Information Systems, 86, 94–112. https://doi.org/10.1016/j.is.2018.08.003

Necula, S. C., Dumitriu, F., & Greavu-Șerban, V. (2024). A Systematic Literature Review on Using Natural Language Processing in Software Requirements Engineering. In Electronics (Switzerland) (Vol. 13, Issue 11). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/electronics13112055

Núñez, A. G., Granda, M. F., Saquicela, V., & Parra, O. (2024). Machine Learning-Enhanced Requirements Engineering: A Systematic Literature Review. International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE - Proceedings, 521–528. https://doi.org/10.5220/0012688100003687

Pei, Z., Liu, L., Wang, C., & Wang, J. (2022). Requirements Engineering for Machine Learning: A Review and Reflection. 166–175. https://doi.org/10.1109/REW56159.2022.00039

Perez-Verdejo, J. M., Sanchez-Garcia, A. J., & Ocharan-Hernandez, J. O. (2020). A systematic literature review on machine learning for automated requirements classification. Proceedings - 2020 8th Edition of the International Conference in Software Engineering Research and Innovation, CONISOFT 2020, 21–28. https://doi.org/10.1109/CONISOFT50191.2020.00014

Rahman, S., Ahmed, F., & Nayebi, M. (2023). Mining Reddit Data to Elicit Students’ Requirements During COVID-19 Pandemic. Proceedings - 31st IEEE International Requirements Engineering Conference Workshops, REW 2023, 76–84. https://doi.org/10.1109/REW57809.2023.00021

Ramírez Leal, J. C., Giraldo Orozco, W. J., & Hernández, R. A. (2015). Aproximación metodológica para la formalización de técnicas en Ingeniería de Requisitos [Methodological approach to formalization of techniques on requirements engineers]. Apropiación de Técnicas de Elicitación de Conocimiento y de Comunicación Personalizadas Para Potenciar El Proceso de Ingeniería de Requisitos, 32, 165–181.

Ranawana, R., & Karunananda, A. S. (2021). An Agile Software Development Life Cycle Model for Machine Learning Application Development. 5th SLAAI - International Conference on Artificial Intelligence and 17th Annual Sessions, SLAAI-ICAI 2021. https://doi.org/10.1109/SLAAI-ICAI54477.2021.9664736

Rivero, L., Diniz, J., Silva, G., Borralho, G., Braz Junior, G., Paiva, A., Alves, E., & Oliveira, M. (2020, December 1). Deployment of a Machine Learning System for Predicting Lawsuits against Power Companies: Lessons Learned from an Agile Testing Experience for Improving Software Quality. ACM International Conference Proceeding Series. https://doi.org/10.1145/3439961.3439991

Rodriguez Vargas, A. J., Falconí Peláez, S. V., Mazón Olivo, B. E., & Tusa Jumbo, E. A. (2024). Integración de Inteligencia Artificial en Telemedicina: Desarrollo y Evaluación de Chatbot Especializado en Enfermedades Virales. Informática y Sistemas Revista de Tecnologías de La Informática y Las Comunicaciones, 8(2), 60–69. https://doi.org/10.33936/isrtic.v8i2.6840

Sarco Calapiña, W., & Toaquiza Pacheco, D. V. (2022). Aplicación de la inteligencia artificial en el desarrollo de software.

Sarco Calpiña, W. M., & Toaquiza Pacheco, D. V. (2022). Aplicación de la inteligencia artificial en el desarrollo de software.

Shafiq, S., Mashkoor, A., Mayr-Dorn, C., & Egyed, A. (2021). NLP4IP: Natural Language Processing-based Recommendation Approach for Issues Prioritization. Proceedings - 2021 47th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2021, 99–108. https://doi.org/10.1109/SEAA53835.2021.00022

Sleimi, A., Sannier, N., Sabetzadeh, M., Briand, L., Ceci, M., & Dann, J. (2021). An automated framework for the extraction of semantic legal metadata from legal texts. Empirical Software Engineering, 26(3). https://doi.org/10.1007/s10664-020-09933-5

Steidl, M., Felderer, M., & Ramler, R. (2023). The pipeline for the continuous development of artificial intelligence models—Current state of research and practice. Journal of Systems and Software, 199. https://doi.org/10.1016/j.jss.2023.111615

Subramanya, R., Sierla, S., & Vyatkin, V. (2022). From DevOps to MLOps: Overview and Application to Electricity Market Forecasting. Applied Sciences (Switzerland), 12(19). https://doi.org/10.3390/app12199851

Tiwari, S., & Malik, A. (2024). Harnessing the Power of Artificial Intelligence in Software Engineering for the Design and Optimization of Cyber-physical Systems. https://doi.org/10.1201/9781003474111-10

Velásquez Henao, J. D., Franco Cardona, C. J., & Cadavid Higuita, L. (2023). Prompt Engineering: a methodology for optimizing interactions with AI-Language Models in the field of engineering. DYNA, 90(230), 9–17. https://doi.org/10.15446/dyna.v90n230.111700

Villamizar, H., Escovedo, T., & Kalinowski, M. (2021). Requirements Engineering for Machine Learning: A Systematic Mapping Study. Proceedings - 2021 47th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2021, 29–36. https://doi.org/10.1109/SEAA53835.2021.00013

Published

2024-12-23

How to Cite

[1]
Ordoñez Ordoñez, P.F. and Erazo Aleaga, Y.V. 2024. Artificial Intelligence Requirements Specification in the Development of Software Products. Informática y Sistemas. 8, 2 (Dec. 2024), 134–146. DOI:https://doi.org/10.33936/isrtic.v8i2.7147.

Issue

Section

Regular Papers