Efecto del kéfir de agua sobre la concentración de vibrios en juveniles de Penaeus vannamei Boone, 1931

Autores/as

  • Marco Geovanny Torres Troya Programa de Pregrado de la Carreara de Ingeniería Acuícola de la Universidad Técnica de Machala. El Oro, Machala, Ecuador http://orcid.org/0000-0002-5985-0697
  • Irán Rodríguez Delgado Grupo de Investigación Agrobiología de la Plantas (AGROPLAN). Universidad Técnica de Machala, El Oro, Machala, Ecuador http://orcid.org/0000-0002-6453-2108
  • Lita Sorroza Ochoa Grupo de Investigación en Acuacultura Sostenible (GIAS). Carrera de Acuacultura. Universidad Técnica de Machala, El Oro, Machala, Ecuador http://orcid.org/0000-0002-8829-0414

DOI:

https://doi.org/10.33936/at.v3i3.4113

Palabras clave:

Vibrios, Kéfir de agua, Probióticos, Camarón Inhibición

Resumen

El uso de bacterias benéficas contribuye a mejorar la salud de los camarones. El kéfir es un conglomerado probiótico conformado por un grupo de microorganismos que conviven en simbiosis, principalmente bacterias ácido-lácticas y levaduras. El objetivo del trabajo fue evaluar el efecto del kéfir de agua en la reducción de vibrios presentes en el cultivo de Penaeus vannamei. Se utilizó un total de ocho contenedores con 30 L de agua de mar, en los que se mantuvieron 15 juveniles con un peso promedio de 1,39 ± 0,03 g por tratamiento, con 6% de recambio diario del agua. Se prepararon cuatro dietas elaboradas con 75% kéfir y 25% productos extracelulares (T1); 50% kéfir y 50% productos extracelulares (T2); 50% kéfir deshidratado y 25% productos extracelulares (T3), y una dieta control solamente con alimento balanceado de 36% proteínas (TC). Se alimentó los camarones con los tratamientos antes mencionados por 10 d. Los resultados del efecto inhibitorio sobre los vibrios indicaron que los tres tratamientos fueron significativamente diferentes en relación al control. En cuanto a la salud de los camarones, los tratamientos con kéfir y sus productos extracelulares presentaron hepatopáncreas con grado 1 en contenido de lípido y mejor formación de túbulos con respecto al control (grado 3). Asimismo, en branquias los tratamientos mostraron grado 2 en formaciones necróticas mientras el control presentó grado 3. Se recomienda el uso de kéfir como un aditivo dietético para disminuir la carga bacteriana, particularmente de tipo vibrios en el cultivo de juveniles de P. vannamei.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aguilera D., Prieto A., Rodríguez G., Escalante K., Gaxiola G. (2019). A vibriosis outbreak in the Pacific white shrimp, Litopenaeus vannamei reared in biofloc and clear seawater. Journal of invertebrate pathology, 167:107-246.

Bergmann R., Pereira M., Veiga S., Schneedorf J., Oliveira N., Fiorini J. (2010). Microbial profile of a kefir sample preparations: grains in natura and lyophilized and fermented suspension. Food Science and Technology, 30: 1022-1026.

Chandrakala N., Priya S. (2017). Vibriosis in Shrimp Aquaculture A Review. International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), 3: 27-33.

Dong X., Bi D., Wang H., Zou P., Xie G., Wan X., Huang J. (2020). pirABvp -Bearing Vibrio parahaemolyticus and Vibrio campbellii Pathogens Isolated from the Same AHPND-Affected Pond Possess Highly Similar Pathogenic Plasmids. Frontiers in Microbiology, 8:1859.

Eckel V., Vogel R. (2020). Genomic and physiological insights into the lifestyle of Bifidobacterium species from water kefir. Archives of Microbiology, 202: 1627-1637.

Egea M., Santos D., Oliveira Filho J., Ores J., Takeuchi K., Lemes A. (2020). A review of nondairy kefir products: their characteristics and potential human health benefits. Critical Reviews in Food Science and Nutrition, 1-17.

Fels L., Jakob F., Vogel R., Wefers D. (2018). Structural characterization of the exopolysaccharides from water kefir. Carbohydrate Polymers, 189: 296-303.

Fernandes S., Kerkar S., D'Costa A., Costa M., Mishra A., Shyama S., Das K. (2021). Immuno-stimulatory effect and toxicology studies of salt pan bacteria as probiotics to combat shrimp diseases in aquaculture. Fish & Shellfish Immunology, 113: 69-78.

Figueredo A., Fuentes J., Cabrera T., León J., Patti J., Silva J., Marcano N. (2020). Bioseguridad en el cultivo de camarones penaeidos: una revisión. AquaTechnica: Revista Iberoamericana de Acuicultura, 2: 1-22.

Garibay E., Martínez M., Calderón K., Gollas T., Martínez L., Vargas F., Arvayo M. (2020). La microbiota del tracto digestivo de camarones peneidos: una perspectiva histórica y estado del arte. Biotecnia, 22: 5-16.

Goméz C., Carbay Y., Sorroza L., Rivera L. (2019). Sinergia de combinaciones de extractos vegetales para el control de vibriosis en sistema productivo de camarón (Litopenaeus vannamei). Revista Metropolitana de Ciencias Aplicadas, 2: 91-98.

Hai N. (2015). The use of probiotics in aquaculture. Journal of applied microbiology, 119: 917-935.

Kibenge F. (2019). Emerging viruses in aquaculture. Current Opinion in Virology, 34: 97-103.

Kong J., Wei W., Liang Q., Qiao X., Kang H., Liu Y., Wang W. (2018). Identifying the function of LvPI3K during the pathogenic infection of Litopenaeus vannamei by Vibrio alginolyticus. Fish & shellfish immunology, 76: 355-367.

Kuebutornye F., Abarike E., Lu Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish and Shellfish Immunology, 87: 820-828.

Laureys D., De Vuyst L. (2014). Microbial Species Diversity, Community Dynamics, and Metabolite Kinetics of Water Kefir Fermentation. Applied and enviroment microbiology, 80: 2564-2572.

Li E., Xu C., Wang X., Wang S., Zhao Q., Zhang M., Chen L. (2018). Gut microbiota and its modulation for healthy farming of Pacific white shrimp Litopenaeus vannamei. Reviews in Fisheries Science & Aquaculture, 26: 381-399.

Ma S., Kim A., Lee W., Kim S., Lee S., Yoon D., Kim S. (2020). Vibrio harveyi Infection Significantly Alters Amino Acid and Carbohydrate Metabolism in Whiteleg Shrimp, Litopenaeus vannamei. Metabolites, 10: 265.

Mathur N., Sai C. (2020). Probiotics Therapy for Dermatophytosis. Book Publisher International.

McKenzie V., Kueneman J., Harris R. (2018). Probiotics as a tool for disease mitigation in wildlife: insights from food production and medicine. Annals of the New York Academy of Sciences, 1429: 18-30.

Metras B., Holle M., Parker V., Miller M., Swanson K. (2020). Assessment of commercial companion animal kefir products for label accuracy of microbial composition and quantity. Journal of animal science, 98: 1-26.

Meybodi N., Mortazavian A. (2017). Probiotic supplements and food products: a comparative approach. Biochem Pharmacol, 6: 2167-0501.

Millard R., Ellis R., Bateman K., Bickley L., Tyler C., Van Aerle R., Santos, E. (2020). How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focussed on White Spot Disease. Journal of invertebrate pathology, 107369.

Mingmongkolchai S., Panbangred W. (2018). Bacillus probiotics: an alternative to antibiotics for livestock production. Journal of Applied Microbiology, 124: 1334-1346.

Morales V., Cuéllar-Anjel J. (Eds.) (2008). Patología e inmunología de camarones peneidos. Programa Iberoamericano CYTED. Rep. de Panamá.

Olmos J., Acosta M., Mendoza G., Pitones, V. (2020). Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Archives of microbiology, 202: 427-435.

Plaza J., Ruiz F., Gil M., Gil A. (2019). Mechanisms of action of probiotics. Advances in Nutrition, 10: S49-S66.

Pooljun C., Daorueang S., Weerachatyanukul W., Direkbusarakom S., Jariyapong P. (2020). Enhancement of shrimp health and immunity with diets supplemented with combined probiotics: application to Vibrio parahaemolyticus infections. Diseases of Aquatic Organisms, 140: 37-46.

Ringø E., Van Doan H., Lee S., Soltani M., Hoseinifar S., Harikrishnan R., Song S. (2020). Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. Journal of applied microbiology, 129: 116-136.

Roomiani L., Ahmadi S., Ghaeni M. (2018). Immune response and disease resistance in the white shrimp, Litopenaeus vannamei induced by potential probiotic Lactobacillus. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 65: 323-329.

Rosales M. (2012). Evaluación de un probiótico en cultivo comercial de camarón blanco Litopenaeus vannamei en Sonora, México. (Tesis de Grado). Universidad de Sonora.

Suez J., Zmora N., Segal E., Elinav E. (2019). The pros, cons, and many unknowns of probiotics. Nature Medicene, 25: 716-729.

Thirugnanasambandam R., Inbakandan D., Abraham L., Kumar C., Sundaram S., Subashni B., Balasubramanian T. (2017). De novo assembly and annotation of the whole genomic analysis of Vibrio campbellii RT-1 strain, from infected shrimp: Litopenaeus vannamei. Microbial pathogenesis, 113: 372-377.

Thirugnanasambandam R., Inbakandan D., Kumar C., Subashni B., Vasantharaja R., Abraham L., Balasubramanian T. (2019). Genomic insights of Vibrio harveyi RT-6 strain, from infected “Whiteleg shrimp” (Litopenaeus vannamei) using Illumina platform. Molecular phylogenetics and evolution, 130: 35-44.

Toledo A., Castillo N., Carrillo O., Arenal A. (2018). Probióticos: una realidad en el cultivo de camarones. Artículo de revisión. Revista de Producción Animal, 30: 57-71.

Wang A., Ran C., Wang Y., Zhang Z., Ding Q., Yang Y., Zhou Z. (2018). Use of probiotics in aquaculture of China-a review of the past decade. Fish Shellfish Immunology, 86: 734-755.

Wang L., Su H., Hu X., Xu Y., Xu W., Huang X., Wen G. (2019). Abundance and removal of antibiotic resistance genes (ARGs) in the rearing environments of intensive shrimp aquaculture in South China. Journal of Enviromental Science and Health, Part B, 54: 211-218.

Wang R., Guo Z., Tang Y., Kuang J., Duan Y., Lin H., Huang J. (2020). Effects on development and microbial community of shrimp Litopenaeus vannamei larvae with probiotics treatment. AMB Express, 10: 1-14.

Wang Y., Hu S., Chiu C., Liu C. (2019). Multiple-strain probiotics appear to be more effective in improving the growth performance and health status of white shrimp, Litopenaeus vannamei, than single probiotic strains. Fish & shellfish immunology, 84: 1050-1058.

Won S., Hamidoghli A., Choi W., Bae J., Jang W., Lee S., Bai S. (2020). Evaluation of Potential Probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on Growth Performance, Immune Response, Gut Histology and Immune-Related Genes in Whiteleg Shrimp, Litopenaeus vannamei. Microorganisms, 8: 281.

Xu D., Bechtner J., Behr J., Eisenbach L., Geißler A., Vogel R. (2018). Lifestyle of Lactobacillus hordei isolated from water kefir based on genomic, proteomic and physiological characterization. International Journal of Food Microbiology, 290: 141-149.

Yang Q., Lü Y., Zhang M., Gong Y., Li Z., Tran N., Li S. (2019). Lactic acid bacteria, Enterococcus faecalis Y17 and Pediococcus pentosaceus G11, improved growth performance, and immunity of mud crab (Scylla paramamosain). Fish & shellfish immunology, 93: 135-143.

Zeng S., Hou D., Liu J., Ji P., Weng S., He J., Huang Z. (2019). Antibiotic supplement in feed can perturb the intestinal microbial composition and function in Pacific white shrimp. Applied microbiology and biotechnology, 103: 3111-3122.
Zheng X., Duan Y., Dong H., Zhang J. (2020). The effect of Lactobacillus plantarum administration on the intestinal microbiota of whiteleg shrimp Penaeus vannamei. Aquaculture, 526, 735331.

Zorriehzahra M., Delshad S., Adel M., Tiwari R., Karthik K., Dhama K., Lazado C. (2016). Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Veterinary Quarterly, 36: 228-241.

Descargas

Publicado

2021-10-14