Growth and alkaline digestive proteases activity of Parachromis dovii larvae fed live prey and formulated diets with different protein sources

Autores/as

  • Juan Bautista Ulloa Rojas Laboratorio de Acuicultura Continental, Escuela de Ciencias Biológicas, Universidad Nacional, 86 - 3000 Heredia, Costa Rica https://orcid.org/0000-0003-4464-1136
  • Mauricio Herrera Campos Laboratorio de Acuicultura Continental, Escuela de Ciencias Biológicas, Universidad Nacional, 86 - 3000 Heredia, Costa Rica http://orcid.org/0000-0003-3327-1950
  • Silvia Valverde Chavarria Laboratorio de Acuicultura Continental, Escuela de Ciencias Biológicas, Universidad Nacional, 86 - 3000 Heredia, Costa Rica https://orcid.org/0000-0003-2823-459X

DOI:

https://doi.org/10.33936/at.v4i2.4610

Palabras clave:

Fish larvae, Protein sources, Enzymatic activity, Feeding

Resumen

ABSTRACT The Parachromis dovii is a carnivorous fish from Central America, which easily accept formulated feeds since exogenous feeding starts; however, its larval growth is lower than that obtained using live food. For this reason, the effect of different dietary protein source combinations on growth and alkaline digestive proteases activity were tested in P. dovii larvae. The test protein mixtures were prepared using fish, tankage and poultry by-product meals in different proportions (four diets) and compared to a commercial product (Artemia cysts Vitellus) and Artemia nauplii as a control. At the end of the trial, larvae fed Artemia nauplii showed the best growth (specific growth rate (SGR): 17.6% BW/d), contrary the Vitellus diet presented the lowest SGR (12.0% body weight per day (BW/d)) (LSD, P<0.05). From the protein sources, D3 (with the highest content poultry by-products meal) showed the worst SGR (12.6% BW/d) while the other treatments gave similar values (D1: 13.5%, D2: 13.2% and D4: 13.7% BW/d). Survival was not affected by dietary treatment (over 93%). The lowest alkaline digestive protease activity was found at six days after hatching (DAH), and it was similar between treatments (P>0.05). The protease activity increased up to 27 DAH, being higher with larvae fed Artemia than other treatments (P<0.05). There was no difference in protease activity between the protein mixture diets, and there was no difference between the formulated diets and Vitellus, except at 20 DAH (P<0.05).

 

Descargas

La descarga de datos todavía no está disponible.

Citas

Aguilera, C., Mendoza, R., Iracheta, I., Márquez, G. (2012). Digestive enzymatic activity on tropical gar (Atractosteus tropicus) larvae fed different diets. Fish Physiology and Biochemistry, 38:6779-691.

Alarcón, F., García-Carreño, F., Navarrete del Toro, M. (2001). Effect of plant protease inhibitors on digestive proteases in two fish species, Lutjanus argentiventris and L. novemfasciatus. Fish Physiology and Biochemistry, 24:179-189.

Alla, Y., Célestin, B., Célestin, A., Tidiani, K. (2011). Effect of three diets on growth and survival rates of African catfish Heterobranchus bidorsalis larvae. The Israeli Journal of Aquaculture-Bamidgeh, 63:1-8.

AOAC (Association of Official Analytical Chemists). 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. Food Composition; Additives; Natural Contaminants. Ed. by K. Helrich. 15th edition. Virginia, USA. 1298 p.

Bussing, W. (2002). Peces de las Aguas Continentales de Costa Rica. Editorial de la Universidad de Costa Rica. San José, Costa Rica.

Drossou, A., Ueberschär, B., Rosenthal, H., Herzig, K. (2006). Ontogenic development of the proteolytic digestion activities in larvae of Oreochromis niloticus fed with different diets. Aquaculture, 256:479-488.

García-Ortega, A., Verreth, J., Segner, H. (2000). Post-prandial protease activity in the digestive tract of African catfish Clarias gariepinus larvae fed decapsulated cysts of Artemia. Fish Physiology and Biochemistry, 22:237-244.

Giguere, M.A. (2011). The economics of partial Artemia replacement using two commercially available feed in diets of Litopenaeus vannamei from Z3/M1 – PL10. Master's tesis, University of Miami, Florida, USA.

Günther, J. (1996). Crecimiento del guapote lagunero (Cichlasoma dovii) en régimen de cultivo intensivo en estanques y su dependencia de la densidad. UNICIENCIA, 13:13-19.

Hassantabar, F., Fereidoumi, A., Ouraji, H., Babaei, S., Jafarpour, A. (2015). Comparison of growth and digestive enzymes activity of kutum (Rutilus kutum) during ontogeny fed with live prey and artificial feed. Aquaculture International, 23:597-612.

Kamarudin, M., Otoi, S., Saad, R. (2011). Changes in growth, survival and digestive enzyme activities of Asian redtail catfish, Mystus nemurus, larvae fed on different diets. African Journal of Biotechnology, 10:4484-4493.

Kolkovski, S. (2001). Digestive enzymes in fish larvae and juveniles-implications and applications to

formulated diets. Aquaculture, 200:181-201.

Kolkovski, S., Koven, W., Tandler, A. (1997). The mode of action of Artemia in enhancing utilization of

microdiet by gilthead seabream Sparus aurata larvae. Aquaculture, 155:193-205.

Lazo, J. (2000). Conocimiento actual y nuevas perspectivas en el desarrollo de dietas para larvas de peces

marinos. Avances en Nutrición Acuícola V. Mérida, Yucatán, México (noviembre 2000).

Lazo, J., Darias, M., Gisbert, E. (2011). Ontogeny of the digestive tract. In: Holt G (ed). Larval fish nutrition.

John Wiley and Sons. London, United Kingdom. pp: 1-46.

Lo, M., Weng, C. (2006). Developmental regulation of gastric pepsin and pancreatic serine protease in larvae

of the euryhaline Oreochromis mossambicus. Aquaculture, 261:1403-1412.

López-Ramírez, G., Cuenca-Soria, C. Álvarez-González, C., Tovar-Ramírez, D., Ortiz-Galindo, J. L., Perales-García, N., Márquez-Couturier, G., Arias-Rodríguez, L., Indy, J.R., Contreras-Sánchez, W. M., Gisbert, E., Moyano, F. J. (2011). Development of digestive enzymes in larvae of Mayan cichlid Cichlasoma urophthalmus. Fish Physiology and Biochemistry, 37:197-208.

Martínez-Montaño, E., Lazo, J. (2012). In vitro protein digestibility of dietary ingredients throughout ontogeny of California halibut, Paralichtys californicus, larvae. Journal of the World Aquaculture Society, 43:51–62.

Mente, E., Solovyev, M., Vlahos, N., Rotllant, G. and Gisbert, E. (2017). Digestive enzyme activity during ontogeny and after feeding diets with different protein sources in zebra cichlid, Archocentrus nigrofasciatus. Journal of the World Aquaculture Society, 48:831-848.

Murashita, K., Fukada, H., Takahashi, N., Hosomi, N., Matsunari, H., Furuita, H., Oku, H., Yamamoto, T. (2015). Effect of feed ingredients on digestive enzyme secretion in fish. Bulletin of Fisheries Research Agency, 40:69-74.

Noori, F., Van Stappen, G., Sorgeloos, P. (2012). Preliminary study on the activity of protease enzymes in Persian sturgeon (Acipenser persicus Borodin, 1897) larvae in response to different diets: effects on growth and survival. Aquaculture Research, 43:198-207.

Olurin, K., Oluwo, A. (2010). Growth and survival of African catfish (Clarias gariepinus) larvae fed decapsulated Artemia, live Daphnia, or commercial starter diet. The Israeli Journal of Aquaculture- Bamidgeh, 62:50-55.

Quirós, J., Valverde, S., Ulloa, J. (2014). The proteolytic digestive activity and growth during ontogeny of Parachromis dovii larvae (Pisces: Cichlidae) using two feeding protocols. Fish Physiology and Biochemistry, 40:1253–1261.

Szkudlarek, M., Zakęś, Z. (2007). Effect of stocking density on survival and growth performance of pikeperch, Sander lucioperca (L.), larvae under controlled conditions. Aquaculture International, 15:67– 81.

Tengjaroenkul, B., Smith, B., Smith, S., Chatreewongsin, U. (2002). Ontogenic development of the intestinal enzymes of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture, 211:241-251.

Toledo-Solís, F., Uscanga-Martínez, A., Guerrero-Zárate, R., Márquez-Couturier, G., Martínez-García, R., Camarillo-Coop, S., Perales-García, N., Rodríguez-Valencia, W., Gómez-Gómez, M., Álvarez-González,

C. (2015). Change on digestive enzymes during initial ontogeny in the three-spot cichlid Cichlasoma

trimaculatum. Fish Physiology and Biochemistry, 41:267-279.

Uscanga-Martínez, A., Moyano-López, F., Álvarez-González, C., Perales-García, N. (2011). Aplicaciones a la mejora de la utilización nutritiva del alimento en cíclidos cultivados en México. Avances en Nutrición Acuícola XI. Monterrey, México (noviembre 2011).

Valverde-Chavarría, S., Álvarez-González, C. A., Brais-Medina, M., Calvo-Elizondo, E., Ulloa-Rojas, J. B. (2016). In vitro digestibility and proteases inhibitory effect of several feedstuffs for Parachromis dovii juveniles and P. dovii hybrid larvae. Fish Physiology and Biochemistry, 42:1767-1776.

Valverde-Chavarría, S., Álvarez-González, C., Ulloa-Rojas, J., Frías-Quintana, C.A., Guerrero-Zárate, R., Quirós-Orlich, J.R., Brais-Medina, M., Calvo-Elizondo, E., Alvarado-Guzmán, L. (2013). Ontogenia del sistema digestivo del guapote lagunero Parachromis dovii durante el periodo larval y selección de ingredientes para su alimentación. Avances en Nutrición Acuícola XII. Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México (noviembre 2013).

Walter, H. (1984). Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyern, H. (Ed). Methods of Enzymatic Analysis. Vol. V. Verlag Chemic Weinheim, Germany. pp: 270-277.

Descargas

Publicado

2022-07-16