Comparación del coeficiente térmico de crecimiento en el camarón Penaeus vannamei en Ecuador con diferentes sistemas de alimentación

Autores/as

  • Miguel Jover Cerdá Universitat Politècnica Valencia
  • Juan Carlos Valle Masson Universitat Politècnica de Valencia. Instituto de Ciencia y Tecnología Animal. Grupo de Acuicultura y Biodiversidad. Camino de Vera s/n 46022 Valencia (España)
  • Patricia Aguilar Astudillo Universitat Politècnica de Valencia. Instituto de Ciencia y Tecnología Animal. Grupo de Acuicultura y Biodiversidad. Camino de Vera s/n 46022 Valencia (España)
  • Ignacio Jauralde García Universitat Politècnica de Valencia. Instituto de Ciencia y Tecnología Animal. Grupo de Acuicultura y Biodiversidad. Camino de Vera s/n 46022 Valencia (España)

DOI:

https://doi.org/10.33936/at.v6i2.6689

Palabras clave:

alimentación manual, alimentadores temporizados, hidrófonos

Resumen

Se estudió el crecimiento de 208 lotes de camarones en condiciones comerciales en la zona de Guayas (Ecuador) alimentados de forma manual al voleo, con comederos temporizados y con hidrófonos. Solo aparecieron diferencias significativas en la Tasa de Crecimiento Específica (TCE) a favor de la alimentación con los hidrófonos, pero no en el Crecimiento Diario (CD) o el Coeficiente Térmico de Crecimiento (CTC). No aparecieron diferencias significativas en el crecimiento de los lotes en función del mes de inicio del lote, cuando se analizaron mediante TCE o CD, pero sí cuando se empleó el CTC, siendo mayores los valores en junio y julio (con temperaturas del agua menores) frente a los lotes de enero y febrero (con temperaturas mayores) lo que reveló un fallo del modelo de crecimiento térmico cuando las temperaturas fueron superiores a 27 ºC. Al aplicar un límite máximo a la temperatura efectiva de 26 ºC, las diferencias desaparecieron, lo que sugiere su inclusión en el modelo CTC para camarón.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdelrahman H.A., Abebe A., Boyd C.E. (2018). Influence of variation in water temperature on survival, growth and yield of Pacific white shrimp Litopenaeus vannamei in inland ponds for low-salinity culture. Aquaculture Research 50(2): 658-672. https://doi.org/10.1111/are.13943

Al-Masqari Z.A., Guo H., Wang R., Yan H., Dong P., Wang G., Zhang D. (2022). Effects of high temperature on water quality, growth performance, enzyme activity and the gut bacterial community of shrimp (Litopenaeus vannamei). Aquaculture Research 53: 3283-3296. https://doi.org/10.1111/are.15836

Araneda M., Gasca-Leyva E., Vela M.A., Dominguez-May R. (2020). Effects of temperature and stocking density on intensive culture of Pacific white shrimp in freshwater. Journal of Thermal Biology 94: 102756. https://doi.org/10.1016/j.jtherbio.2020.102756

Borbor P. L. (2020). Diseño de Granja Camaronera en Ecuador. Trabajo Fin de Máster, Máster de Acuicultura, Departamento de Ciencia Animal, Universitat Politècnia de Valencia, Comunidad Valenciana, España.

Bureau D., Azevedo P., Tapia Salazar M., & Cuzón G. (2000). Pattern and cost of growth and nutrient deposition in fish and shrimp: Potential implications and applications. Memorias del Quinto Simposium Internacional de Nutrición Acuícola. Mérida, México. Simp. Int. Nutr. Acuic. V: 111-140.

Carvajal R., Nebot A. (1998). Growth model for white shrimp in semi-intensive farming using inductive reasoning methodology. Computers and Electronics in Agriculture 19: 187-210. https://doi.org/10.1016/S0168-1699(97)00043-4

Cho C., Bureau D. (1998). Development of bioenergetic models and the Fish-PrFEQ software to estimate production, feeding ration and waste output in aquaculture. Aquatic Living Resources 11: 199-210. https://doi.org/10.1016/S0990-7440(98)89002-5

Estruch V.D., Mayer P., Roig B., Jover M. (2017). Developing a new tool based on a quantile regression mixed-TGC model for optimizing gilthead sea bream (Sparus aurata) farm management. Aquaculture Research 48: 5901-5912. https://doi.org/10.1111/are.13414

FAO. (2024). The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome. https://doi.org/10.4060/cd0683en

Franco A.R., Ferreira J.G., Nobre A.M. (2006). Development of a growth model for penaeid shrimp. Aquaculture 259: 268-277. https://doi.org/10.1016/j.aquaculture.2006.05.051

Guo B., Wang F., Dong S., Dong Y., Tian X. (2010). The effects of cyclical temperature changes on growth and physiological status of Litopenaeus vannamei. Aquaculture International 18: 921-932. https://doi.org/10.1007/s10499-009-9314-y

Jescovitch L. N., Ullman C., Rhodes M., Davis D. A. (2018). Effects of different feed management treatments on water quality for Pacific white shrimp Litopenaeus vannamei. Aquaculture Research 49: 526–531. https://doi.org/10.1111/are.13483

Mansouri A. (2013). Effect of temperature and salinity on survival and growth of the white shrimp, Litopenaeus vannamei (Bonne, 1931) cultured in biofloc system. Thesis of Master. Pukyyong National University. South Korea.

Mayer P., Estruch V.D., Jover M. (2012). A two-stage model for gilthead sea bream (Sparus aurata) based on the thermal growth coefficient. Aquaculture 358-359: 6-13. https://doi.org/10.1016/j.aquaculture.2012.06.016

Ponce-Palafox J., Martínez-Palacios C.A., Ross L.G. (1997). The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp Penaeus vannamei, Boone, 1931. Aquaculture 157: 107-115. https://doi.org/10.1016/S0044-8486(97)00148-8

Powell C.D., Tansil F., France J., Bureau D.P. (2020). Growth trajectory analysis of Pacific whiteleg shrimp (Litopenaeus vannamei): Comparison of the specific growth rate, the thermal-unit growth coeffficient and its adaptations. Aquaculture Research 51: 480-489. https://doi.org/10.1111/are.14391

Reis J., Novriadi R., Swanepoel A., Jingping G., Rhodes M., Davis A. (2020). Optimizing feed automation: timer-feeders and on demand systems in semi-intensive pond culture of shrimp Litopenaeus vannamei. Aquaculture 519, 734759. https://doi.org/10.1016/j.aquaculture.2019.734759

Reis J., Weldon A., Ito P., Stites W., Rhodes M., Davis A. (2021). Automated feeding systems for shrimp: Effects of feeding schedules and passive feedback systems. Aquaculture 541:736800. https://doi.org/10.1016/j.aquaculture.2021.736800

Ruiz-Velazco J.M.J, Hernández-Llamas A., Gómez-Muñoz V.M., Magallón F.J. (2010a). Dynamics of intensive production of shrimp Litopenaeus vannamei affected by white spot disease. Aquaculture 300: 113-119. https://doi.org/10.1016/j.aquaculture.2009.12.027

Ruiz-Velazco J.M.J, Hernández-Llamas A., Gómez-Muñoz V.M. (2010b). Management of stocking density, pond size, starting time of aeration, and duration of cultivation for intensive commercial production of shrimp Litopenaeus vannamei. Aquacultural Engineering 43: 114-119. https://doi.org/10.1016/j.aquaeng.2010.08.002

Sánchez I., González I. (2021). Monitoring shrimp growth with control charts in aquaculture. Aquaculture Engineer 95: 102180. https://doi.org/10.1016/j.aquaeng.2021.102180

Ullman C., Rhodes M. A., Hanson T., Cline D., Allen Davis D. (2019a). Effect of four different feeding systems on the pond production of Pacific White Shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society 50: 54-64. https://doi.org/10.1016/j.aquaculture.2018.08.040

Ullman C., Rhodes M. A., Allen Davis D. (2019b). Feed management and the use of automatic feeders in the pond production of Pacific white shrimp Litopenaeus vannamei. Aquaculture 498: 44-49. https://doi.org/10.1016/j.aquaculture.2018.08.040

Valle J.C., Molina-Poveda C., Jover-Cerdá Miguel. (2023). The effects of manual, time and sound feeding systems on the growth and production of white shrimp (Litopenaeus vannamei) in semi-intensive farming systems in Ecuador. International Journal of Aquaculture 13(8): 1-14. https://doi.org/10.5376/ija.2023.13.0008

Wyban J., Walsh W.A., Godin D.M. (1995). Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture 138: 267-279. https://doi.org/10.1016/0044-8486(95)00032-1

Descargas

Publicado

2024-08-01

Número

Sección

Artículo Original