Capture, selection and ingestion of particles in Ostreidae (Bivalvia): Crassostrea spp.

Authors

  • Alexander Valera-Mejias Laboratorio Sea Farmers, Sinaloa, México http://orcid.org/0000-0002-5642-2160
  • Walter Barbosa Ortega Laboratorio Sea Farmers, Sinaloa, México

DOI:

https://doi.org/10.33936/at.v2i3.3091

Keywords:

Oysters, Feeding, Ctenidium, Physiology, Pseudo-feces

Abstract

The contribution of bivalve mollusks to world aquaculture production has shown a constant increase, which has been of great importance and impact as a source of food with high nutritional value, foreign exchange and jobs, thus generating significant interest during the last decades, including research carried out on aspects related to their functional anatomy, ontology, physiology and mechanisms used for their feeding. There are multiple publications and research done on this subject, some of which are referenced in this review. The present work begins by presenting generalities about oysters anatomy and emphasizes aspects related to their strategies for capturing, selecting and ingesting suspended particles, focusing on oysters of the genus Crassostrea, but with structures and mechanisms related to other species of bivalves as well, with which it bears strong similarities. Detailed information on the ctenidial structure and its development is presented, as well as on the main chemical, physical, environmental and physiological factors involved in the treatment of captured food particles, and finally the mechanisms proposed for the production of pseudo-feces.

 

 

Downloads

Download data is not yet available.

References

Alexander, J, A; Stoecker, D, K; Meritt, D, W; Alexander, S, T; Padeletti, A; Johns, D; Van Heukelem, L; Glibert, P, M., (2008). Differential production of feces and pseudofeces by the oyster Crassostrea ariakensis when exposed to diets containing harmful dinoflagellate and raphidophyte species. Journal of Shellfish Research, 27(3):567–579.

Barille, L; Prou, J; Heral, M; Bougrier, S., (1993). No influence of food quality, but ration-dependent retention efficiencies in the Japanese oyster, Crassostrea gigas. Journal of Experimental Marine Biology and Ecology, 171:91–106.

Bayne, B, L; Hedgecock, D; McGoldrick, D; Rees, R., (1999). Feeding behaviour and metabolic efficiency contribute to growth heterosis in Pacific oysters [Crassostrea gigas (Thunberg)]. Journal of Experimental Marine Biology and Ecology, 233 (1999) 115 –130.

Beninger, P, G; Cannuel, R., (2006). Acquisition of particle processing capability in the oyster Crassostrea gigas: ontogeny of the mantle pseudofeces rejection tracts. Marine Ecology Progress Series, 325:153–163.

Beninger, P, G; Veniot, A; Poussart, Y., (1999). Principles of pseudofeces rejection on the bivalve mantle: integration in particle processing. Marine Ecology Progress Series, 178: 259-269.

Bernard, F, R., (1974). Particle sorting and labial palp function in the Pacific oyster Crassostrea gigas (Thunberg, 1795) The Biological Bulletin, 146, (1): 1-10.

Bernay, B; Le Baudy-Floc’h, M; Zanuttini, B; Zatylny, C; Pouvreau, S; Henry, J., (2006). Ovarian and sperm regulatory peptides regulate ovulation in the oyster Crassostrea gigas. Molecular reproduction and development 73:607–616.

Bieler A, N; Mikkelsen, P, M; Collins, T, M; Glover, M, A; González, V, L; Graf, D, L; Harper, E, M; Healy, J; Kawauchi, G, Y; Sharma, P, P; Staubach, S; Strong, E, E; Taylor, J, D; Tëmkin, I; Zardus, J, D; Clark, S; Guzmán, A; McIntyre, E; Sharp, P; Giribet, G., (2014). Investigating the Bivalve Tree of Life – an exemplar-based approach combining molecular and novel morphological characters. Invertebrate Systematics, 28:32–115 DOI: http://dx.doi.org/10.1071/IS13010.

Blegvad, H. (1914). Food and conditions of nourishment among the communities of invertebrate animals found on the sea bottom in Danish waters. Report of the Danish Biological Station, 22:45–78.

Cáceres, J; Vásquez, R., (2013). Enfermedades, parásitos y episodios de mortalidad de ostiones de importancia comercial en México y sus implicaciones para la producción. Ciencia Pesquera. Número especial 21:5-48.

Cáceres, J, Vásquez, R., (2014). Manual de buenas prácticas para el cultivo de moluscos bivalvos. OIRSAOSPESCA pp. 117.

Caers, M; Utting, S, D; Coutteau, P; Millican, P, F., (2002). Impact of the supplementation of a docosahexanoic acid-rich emulsion n the reproductive output of oyster broodstock, Crassostrea gigas. Marine Biology 140, 1157-1166.

Cannuel, R; Beninger, P, G., (2006). Gill development, functional and evolutionary implications in the Pacific oyster Crassostrea gigas (Bivalvia: Ostreidae). Marine Biology 149: 547–563 DOI: http://dx.doi.org/10.1007/s00227-005-0228-6.

Castrec, J; Hégaret, H; Huber, M; Le Grand, J; Huvet, A; Tallec, K; Boulais, M; Soudant, P; Fabioux, C., (2020). The toxic dinoflagellate Alexandrium minutum impairs the performance of oyster embryos and larvae. Harmful Algae. 92, 101744. DOI: http://dx.doi.org/10.1016/j.hal.2020.101744.

Cham, G; Silva, F, C; Lopes, G, R; Melo, C, M, R., (2014). The reproductive cycle of the oyster Crassostrea gasar. Brazilian Journal of Biology., 74(4): 967-976.

Chávez-Villalba, J., (2014). Cultivo de ostión Crassostrea gigas: Análisis de 40 años de actividades en México. Hidrobiológica 24(3): 175-190.

Cognie, B; Barillé, L., (1999). Does bivalve mucus favour the growth of their main food source, microalgae? Oceanologica Acta 22 (4): 441-450.

Cognie, B; Barillé, L; Massé, G; Beninger, P, G., (2003). Selection and processing of large suspended algae in the oyster Crassostrea gigas. Marine Ecology Progress Series, 250: 145–152.

Cognie, B; Barillé, L; Rincé, Y., (2001). Selective Feeding of the Oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries 24(1):126–131.

da Costa, F; Robert, R; Quéré, C; Wikfors, G, H., (2015). Essential fatty acid assimilation and synthesis in larvae of the bivalve Crassostrea gigas. Lipids, 50:503-511.

Dupuy, C; Vaquer, A; Lam-Höai, T; Rougier, C; Mazouni, N; Lautier, J; Collos, Y; Le Gall, S., (2000). Feeding rate of the oyster Crassostrea gigas in a natural planktonic community of the Mediterranean Thau Lagoon. Marine Ecology Progress Series, 205: 171–184.

Dutertre, M; Barillé, L; Haure, J; Cognie, B., (2007). Functional responses associated with pallial organ variations in the Pacific oyster Crassostrea gigas (Thunberg, 1793). Journal of Experimental Marine Biology and Ecology 352:139–151.

Ehrich, M, K; Harris, L, A., (2015). A review of existing eastern oyster filtration rate models. Ecological Modelling 297:201–212

Enríquez-Ocaña, L, F; Nieves-Soto, M; Piña-Valdez, P; Martinez-Cordova, L, R; Medina-Jasso, M, A., (2012).
Evaluation of the combined effect of temperature and salinity on the filtration, clearance rate and assimilation efficiency of the mangrove oyster Crassostrea corteziensis (Hertlein, 1951). Archives of Biological Sciences, Belgrade, 64 (2): 479-488. DOI: http://dx.doi.org/10.2298/ABS1202479O 479.

Escudeiro, A., (2006). Crecimiento y reproducción de la ostra rizada, Crassostrea gigas (Thunberg, 1793), cultivada en intermareal y en Batea de Galicia (NW España). Universidade do Algarve Facultade de ciencias do mar e do ambiente. Centro de investigacóns mariñas (CIMA). Consellería de Pesca, Marisqueo e Acuicultura. Xunta de Galicia.

Epifanio, C, E., (1979). Comparison of yeast and algal diets for bivalve molluscs. Aquaculture, 16:187-192.
FAO. Food and Agriculture Organization of the United Nations., (2018). El estado mundial de la pesca y la acuicultura 2018. Cumplir los objetivos de desarrollo sostenible. Roma. [Internet]. Available in: http://www.fao.org/ publications/sofia/es/

Fisher, W; S; DiNuzzo, A, R., (1991). Agglutination of bacteria and erythrocytes by serum from 6 species of marine mollusks. Journal of Invertebrate Pathology, 57:380–394.

Góngora-Gómez, A, M; Sepúlveda, C, H; Verdugo, H, A; Astorga, O; Rodríguez-González, H; Domínguez-Orozco, A, L; Hernández-Sepúlveda, J, A; García-Ulloa, M., (2020). Gonadal maturity of Crassostrea corteziensis cultivated in the Gulf of California. Latin American Journal of Aquatic Research, 48(3):381-395.

Gray, M, W; Langdon, C., (2019). Particle processing by Olympia oysters Ostrea lurida and Pacific oysters Crassostrea gigas. Estuaries and Coasts. DOI: http://dx.doi.org/10.1007/s12237-018-0480-x

Guzmán-Agüero, J, E; Nieves-Soto, M; Hurtado, M, A; Piña-Valdez, P; Garza-Aguirre, M., (2013). Feeding physiology and scope for growth of the oyster Crassostrea corteziensis (Hertlein, 1951) acclimated to different conditions of temperature and salinity. Aquacult Int 21:283–297. DOI: http://dx.doi.org/10.1007/s10499-012-9550-4

Helm, M, M; Bourne, N; Lovatelli, A., (2006). FAO. Cultivo de bivalvos en criadero. Manual práctico. Documento técnico de pesca 471pp.

Howard, D, W; Lewis, E, J; Keller, B, J; Smith, C, S., (2004). Histological techniques for marine bivalve molluscs and crustaceans. NOAA Technical Memorandum NOS NCCOS 5, 218pp.

Kach, D; Ward, J, E., (2008). The role of marine aggregates in the ingestion of picoplankton-size particles by suspension-feeding molluscs. Marine Biology 153:797–805.

Kooijman, S, A, L, M., (2006). Pseudo-faeces production in bivalves. Journal of Sea Research 56:103–106. DOI: http://dx.doi.org/10.1016/j.seares.2006.03.003.

Lodeiros, C; Rodríguez-Pesantes, D; Márquez, A; Revilla, J; Chávez-Villalba, J; Sonnenholzner, S., (2017). Suspended cultivation of the Pacific oyster Crassostrea gigas in the Eastern Tropical Pacific. Aquacult Int. 26, 337–347. DOI: http://dx.doi.org/10.1007/s10499-017-0217-z.

Lucas, A; Rangel, C., (1983). Detection of the first larval feeding in Crassostrea gigas, using the epifluorescence microscope. Aquaculture, 30:369-374.

Mafra, L, L; Bricelj, V, M; Ward, J, E., (2009). Mechanisms contributing to low domoic acid uptake by oysters feeding on Pseudonitzschia cells. II. Selective rejection. Aquatic Biology, 6:213–226.

Mazón‐Suástegui, J, M; Leyva‐Miranda, G, A; Arrieche‐Galíndez, D; Lodeiros‐Seijo, C; López‐Carvallo, J, A., (2019). Influence of hatchery rich‐carbohydrate diet on the oyster Crassostrea corteziensis (Hertlein, 1951) farming. Aquaculture Research. 2019:1–4.

Medler, S; Silverman, H., (2001). Muscular alteration of gill geometry in vitro: Implications for bivalve pumping processes. The Biological Bulletin, 200:77–86.

Møhlenberg, F; Riisgård, H, U., (1978). Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia 17:239–246.

OIE. Organización Mundial de Sanidad Animal., (2019). Manual de diagnóstico en animales acuáticos. Cap. 2.4. 6th ed. París, Francia: OIE

Pales, E; Barille, L; Allam, B., (2007). Use of encapsulated live microalgae to investigate pre-ingestive selection in the oyster Crassostrea gigas. Journal of Experimental Marine Biology and Ecology, 343:118 –126.

Pales, E; Perrigault, M; Ward, J, E; Shumway, S, E; Allam, B., (2009). Lectins associated with the feeding organs of the oyster Crassostrea virginica can mediate particle selection. The Biological Bulletin. 217:130 –141.

Palmer, R, E; Williams, L, G., (1980). Effect of particle concentration on filtration efficiency of the bay scallop Argopecten irradians and the oyster Crassostrea virginica. Ophelia 19:163–174.

Pastoureaud, A; Heral, M; Prou, J; Razet, D; Russu, P., (1996). Particle selection in the oyster Crassostrea gigas (Thunberg) studied by pigment HPLC analysis under natural food conditions. Oceanologica Acta, 19 (1): 79-88.

Petersen, C, G, J., (1908). First report on the oysters and oyster fisheries in the Lim Fjord. Report of the Danish Biological Station 15:1–42.

Petersen, C, G, J; Jensen, P, B., (1911). Valuation of the sea. I. Animal life of the sea-bottom, its food and quantity. Report of the Danish Biological Station, 20:1–78.

Prasetiya, F, S; Decottignies, P; Barillé, L; Gastineau, R; Jacquette, B; Figiel, A; Morançais, M; Tremblay, R; Mouget, J, L; Cognie, B., (2017). Cell size-based, passive selection of the blue diatom Haslea ostrearia by the oyster Crassostrea gigas. Journal of Molluscan Studies 2017:1–8. DOI: http://dx.doi.org/10.1093/mollus/eyx012.

Rato, A; Pereira, L F; Joaquim, S; Gomes, R; Afonso, C; Cardoso, C; Machado, J; Gonçalves, J, F, M; Vaz-Pires, P; Magnoni, L, J; Matias, A, M; Matias, D; Bandarra, N, M; Ozório, R, O, A., (2019). Fatty acid profile of Pacific oyster, Crassostrea gigas, fed different ratios of dietary seaweed and microalgae during broodstock conditioning. Lipids, DOI: http://dx.doi.org/10.1002/lipd.12177.

Ren, J, S; Ross, A, H; Schiel, D, R., (2000). Functional descriptions of feeding and energetics of the Pacific oyster Crassostrea gigas in New Zealand. Marine Ecology Progress Series, 208:119–130.

Rodríguez, A; González M, L; Sarasquete, C., (2002). Estudio del aparato digestivo de Crassostrea angulata. Boletín Instituto Español de Oceanografía, 18 (1-4): 329-336.

Rodríguez-Jaramillo, C; Hurtado, M, A; Romero-Vivas, E; Ramírez, J, L; Manzano, Palacios, E., (2008). Gonadal development and histochemistry of the tropical oyster, Crassostrea corteziensis (Hertlein, 1951) during an annual reproductive cycle. Journal of Shellfish Research, 27(5):1129–1141.

Rosa, M; Ward, J, E; Shumway, A, E., (2018). Selective capture and ingestion of particles by suspension-feeding bivalve molluscs: A review. Journal of Shellfish Research, 37(4):727–746. DOI: http://dx.doi.org/10.2983/035.037.0405.

Saraiva, S; van der Meer, J; Kooijman, S, A, L, M; Sousa, T., (2011). Modelling feeding processes in bivalves: A mechanistic approach. Ecological Modelling, 222:514–523.

Shaw, B, L; Battle, H, I., (1957). The gross and microscopic anatomy of the digestive tract of the oyster Crassostrea virginica (Gmelin) Canadian Journal of zoology. 35:

Schmit, P; Duperthuy, M; Montagnani, C; Bachère, E; Destoumieux-Garzón, D., (2014). Immune responses in the Pacific oyster Crassostrea gigas: an overview with focus on summer mortalities Oysters. ISBN 978-1-62100-518-6.

Sornin, J, M; Deslous-Paoli, J, M; Hesse, O., (1988). Experimental study of the filtration of clays by the oyster Crassostrea gigas (Thunberg): Adjustment of particle size for best retention. Aquaculture, 69:355-366.

Tacon, A, G, J., (2019) Trends in Global Aquaculture and Aquafeed Production: 2000–2017, Reviews in Fisheries Science & Aquaculture, DOI: http://dx.doi.org/10.1080/23308249.2019.1649634.

Tamburri, M, N; Zimmer-Faust. R, K., (1996). Suspension feeding: basic mechanisms controlling recognition and ingestion of larvae. Limnology and Oceanography, 41:1188–1197.

Tanyaros, S; Sujarit, C; Jansri, N; Tarangkoon, W., (2016). Baker’s yeast as a substitute for microalgae in the hatchery rearing of larval and juvenile tropical oyster (Crassostrea belcheri, Sowerby 1871), Journal of Applied Aquaculture, 28(1):35-46. DOI: http://dx.doi.org/10.1080/10454438.2016.1163312.

Wang, L; Song, J; Bi, H; Gray, M; Fan, C; Liu, M; Mao, X., (2020). Adaptive feeding in the American oyster Crassostrea virginica: Complex impacts of pulsatile flow during pseudofecal ejection events. Limnology and Oceanography, 9999(2020):1–14.

Ward, J, E., (1996) Biodynamics of Suspension-Feeding in Adult Bivalve Molluscs: Particle Capture, Processing, and Fate. Invertebrate Biology 115(3):218-231.

Ward, J, E; Beninger, P, G; MacDonald, B, A; Thompson, R, J., (1991). Direct observations of feeding structures and mechanisms in bivalve molluscs using endoscopic examination and video image analysis. Marine Biology,. 111: 287-291.

Ward, J, E; Newell, R. I. E; Thompson, R, J; MacDonald, B, A., (1994). In vivo Studies of Suspension-Feeding Processes in the Eastern Oyster, Crassostrea virginica (Gmelin). Biological Bulletin, 186 (2): 221-240.

Ward, J, E; Rosa, M; Shumway, S, E., (2019). Capture, ingestion, and egestion of microplastics by suspension-feeding bivalves: a 40-year history. Canadian Science Publishing.

Ward, J, E; Sanford, L, P; Newell, R, I, E; MacDonald, B, A., (1998). A new explanation of particle capture in suspension-feeding bivalve mollusks. Limnology and Oceanography, 43:741–752.

Ward, J, E; Shumway, S, E., (2004). Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. Journal of Experimental Marine Biology and Ecology, 300:83–130.

Whyte, J, N, C; Bourne, N; Ginther, N, G., (1990). Biochemical and energy changes during embryogenesis in the rock scallop, Crassadoma gigantea (Gray). Marine Biology, 106:239-244.

Yurchenko, O, V; Skiteva, O, I; Voronezhskaya, E, E; Dyachuk, V, A., (2018). Nervous system development in the Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia). Frontiers in Zoology 15:10. DOI: http://dx.doi.org/0.1186/s12983-018-0259-8.

Published

2020-12-31