Effect of irradiance on the growth and coloration of the marine cyanobacterium Spirulina subsalsa Oersted ex Gomont, 1892
DOI:
https://doi.org/10.33936/at.v3i1.3483Keywords:
Colour change, Light, Optical density, Pigments, Photoacclimation, WeightAbstract
The marine cyanobacterium Spirulina subsalsa was isolated with an unusual wine-reddish coloration, rich in phycoerythrin, which is the first record in Mexican coasts (especially for Oaxaca). Its growth was characterized based on wet weight, the concentration of chlorophyll a, extracted with 90% acetone, and the determination of its absorption spectrum at 36 days in ASNIII medium under different intensity and quality of light, using cellophane paper as a filter. The increase by wet weight was barely perceptible in all the tested conditions, with greater variation at the beginning than at the end of the trial. Chlorophyll a and its spectrum showed an increase, greater with the red and blue filters, less in yellow, green and white (control), where the absorption spectra of chlorophyll a included wavelengths of blue and red-orange light, with peaks at approximately 450-475 nm and 650-675 nm and a characteristic shoulder of carotenoids at 450-500 nm. The color of the biomass varied according to the filter, so that the light in terms of quantity (intensity) and quality (wavelength) affected the quality of the biomass produced by such cyanobacterium. In addition, its color change was shown based on the filter used and shows its potential to obtain pigments for the aquaculture and biotechnology industries.
Downloads
References
Bogorad L. (1975). Phycobiliproteins and complementary chromatic adaptation. Annual Review of Plant Physiology, 26(1), 369–401. doi: https://doi.org/10.1146/annurev.pp.26.060175.002101.
Buenfil-Gómez C., Compeán-García O., Couoh-Solís L., Uribe-Ruiz N. Gómez-Rodríguez E. Pérez-Zapata A. (2011). Manual de prácticas de Biología Moderna. Universidad Autónoma de Campeche, México.
Bryant D.A. (1994). The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, Holland.
Canter Lund H., Lund J.W.G. (1995). Freshwater algae: their microscopic world explored. Balogh Scientific Books. Biopress Ltd., Bristol, England, United Kingdom.
Carrasco-López G. (2008). Efecto de la intensidad de luz sobre el crecimiento de la cianobacteria Spirulina sp. (BASp-3). Tesis de Ingeniería en Pesquerías con opción en Acuicultura. Instituto Tecnológico de Salina Cruz, Salina Cruz, Oaxaca. México.
Díaz C., Maske H. (2000). Abundance of coccoid cyanobacteria, hydrographic parameters and the possible underestimation of in situ chlorophyll a in the northern Gulf of California and the Mexican California current. Ciencias Marinas, 26(3), 441–461.
Hernández-Enríquez G. (2007). Evaluación de la química proximal y toxicidad de Synechococcus sp. (Cyanophyta; Orden Croococcales) del Sistema Lagunar Mar Muerto, Oaxaca, México. Licenciatura en Biología Marina, Universidad del Mar, Puerto Ángel, Oaxaca, México.
Jonte L., Rosales N., Briceño B., Morales E. (2003). La salinidad y la irradiancia modulan el crecimiento de la cianobacteria Synechocystis minuscula en cultivos discontinuos. Multiciencias, 3(1): 1-13.
Kehoe D.M. (2010) Chromatic adaptation and the evolution of light color sensing in cyanobacteria. Proceedings of the National Academy of Sciences, 107: 9029-9030.
Lesser M.P. (2008). Effects of ultraviolet radiation on productivity and nitrogen fixation of the cyanobacterium, Anbaena sp. (Newton´s strain). Hydrobiologia 598: 1-9.
MacColl R. (1998). Cyanobacterial phycobilisomes. Journal of Structural Biology, 124(2–3), 311–334. doi: https://doi.org/10.1006/jsbi.1998.4062.
Manrique-Reol E. (2003). Los pigmentos fotosintéticos, algo más que la captación de luz para la fotosíntesis. Ecosistemas, XII(1): 1-11. URL: http//www.aeet.org/ecosistemas/031/informe4.htm.
Millie D.F., Ingram D.A., Dionigi C.P. (1990). Pigment and photosynthetic responses of Oscillatoria agardhii (Cyanophyta) to photon flux density and spectral quality. Journal of Phycology, 26: 660-666.
Morales E., Rodríguez M., García D., Loreto C., Marco E. (2002). Crecimiento, producción de pigmentos y exopolisacáridos de la cianobacteria Anabaena sp. PCC 7120 en función del pH y CO2. Interciencia, 27(7): 373-378.
Morone J., Alfeus A., Vasconcelos V., Martins R. (2019). Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals — A new bioactive approach, Algal Research, 41: 101541.
Mur L.R., Skulberg O.M., Utkilen H. (1999). Cyanobacteria in the environment. In: Chorus, I. & J. Bartram (eds.). Toxic cyanobacteria in water: A guide of their public health consequences, monitoring and management. WHO by E & FN Spon, London, England. p: 400-400.
Nieto-Panqueva C.F. (2012). Cianobacterias bentónicas arrecifales: Evaluación de sus interacciones alelopáticas mediante ensayos in situ en comunidades coralinas Islas del Rosario, Caribe colombiano. Tesis Licenciatura en Biología Marina. Universidad de Bogotá Jorge Tadeo Lozano Facultad de Ciencias Naturales e Ingeniería, Bogotá, Colombia.
Olaizola M., Duerr E.O. (1990). Effects of light intensity and quality on the growth rate and photosynthetic pigment content of Spirulina platensis. Journal of Applied Phycology, 2: 97-104.
Pelato-Sánchez M.L. (2011). Las cianobacterias: cooperación versus competencia. Disertación Académica. Real Academia de Ciencias Exactas, Físicas, Químicas Y Naturales de Zaragoza, Zaragoza, España.
Pearl H.W., Tucker J., Bland P.T. (1983). Carotenoid enhancement and its role in maintaining blue-green (Microcystis aeruginosa) surface blooms. Oceanography, 28: 847-857.
Pérez-Linares J. (2003). Caracterización de las secuencias ribosomales 16s (ADNr) de cianobacterias asociadas a eventos de toxicidad. Tesis Maestría, Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S., México.
Raven J.A. (1984). A cost‐benefit analysis of photon absorption by photosynthetic unicells. New Phytologist, 98(4): 593-625.
Robledo-D'Angelo O. (2017). Biopelículas fototróficas, ¿qué longitudes de onda lumínica favorecen su desarrollo y diversidad? Ejemplo de enseñanza de fundamentos de ecología microbiana desde una práctica sencilla de laboratorio escolar. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 14(3): 647-652.
Rosales-Loaiza N., Guevara M., Lodeiros C., Morales, E. (2008). Crecimiento y producción de metabolitos de la cianobacteria marina Synechococcus sp. (Chroococcales) en función de la irradiancia. Revista de Biología Tropical, 56 (2): 421-429.
Saini D.K., Pabbi, S., Shukla P. (2018). Cyanobacterial pigments: Perspectives and biotechnological approaches, Food and Chemical Toxicology, 120: 616–624.
Sanfilippo J.E., Nguyen A.A., Karty J.A., Shukla A., Schluchter W.M., Garczarek L., Partensky F., Kehoe D. M. (2016). Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus. Proceedings of the National Academy of Sciences, 113(21), 6077–6082. doi:10.1073/pnas.1600625113
Singh R.K., Tiwari S.P., Rai A.K., Mohapatra T.M. (2011). Cyanobacteria: An emerging source for drug Discovery. Journal of Antibiotic, (Tokyo), 64(6): 401–412.
Sommaruga R., Chen Y, Liu Z. (2009). Multiple strategies of Bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters. Microbial Ecology, 57: 667-674.
Tandeau de Marsac N. (1977). Occurrence and nature of chromatic adaption in cyanobacteria. Journal of Bacteriology, 130(1), 82–91.
Tandeau de Marsac N., J. Houmard. (1993). Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiology Letters, 104(1‐2): 119-189.
Tomaselli L., Margheri M.C., Sacchi A. (1991). Effects of light on pigments and photosynthetic activity in a phycoerythrin-rich strain of Spirulina subsalsa. Aquatic Microabial Ecology, 9: 27-31.
Torres-Ariño, A. (2001). Aislamiento y caracterización de cianobacterias marinas productoras de compuestos de interés biomédico. Tesis de Maestría en Biotecnología Marina. Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México.
Torres-Ariño A. (2004). Uso de cianobacterias en la producción de antibióticos. Ciencia y Mar, VIII (23): 43-52.
Torres-Ariño A., Okolodkov Y.B., Herrera-Herrera N.V., Hernández-Barrera B.L., González-Resendiz L., León-Tejera, H., Gárate-Lizárraga I. (2019). Un listado del fitoplancton y microfitobentos del sureste del Pacífico mexicano. Cymbella, 5(1): 1-97.
Wilmotte A. (1988). Growth and morphological variability of six strains of Phormidium cf. ectocarpi Gomont (Cyanophyceae) cultivated under different temperatures and light intensity. Archiv für Hydrobiologie/Algological Studies, 50-53: 35-46.
Włodarska-Kowalczuk M., Balazy P., Kobos J., Wiktor J., Zajaczkowski M., Moskal W. (2014). Large red cyanobacterial mats (Spirulina subsalsa Oersted ex Gomont) in the shallow sublittoral of the southern Baltic. Oceanología, 56(3): 661-666.

