Mixotrophic phytodepuration in aquaculture recirculation systems (RAS) for the sustainable management of polluting nutrients

Authors

  • Jorge Silva-Acosta Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile. http://orcid.org/0000-0002-2452-2327
  • Christian Canales Valenzuela Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Concepción, Chile.
  • Sergio Rodríguez Leal Ingeniería y Bionegocios FDM Spa, Concepción, Chile.

DOI:

https://doi.org/10.33936/at.v3i1.3484

Keywords:

Intensive aquaculture, Nitrifying biofilter, Water treatment, Biomass, Circular economy

Abstract

Industrial aquaculture has grown rapidly due to the increase in world demand for fish and shellfish, which has stimulated the development of aquaculture systems for the cultivation of marine species. The need to maintain high levels of productivity makes them complex unstable systems, prone to disturbances with the potential risk of causing problems of contamination of the natural environment. In intensive aquaculture operations, it is estimated that in the transformation processes for the development and growth of biomass, approximately 75% of the feed is released in the form of nitrogen and phosphorus. During the last decades, efforts have been made to develop processes for the elimination of these nutrients-pollutants, which would otherwise be released into natural water bodies causing eutrophication. The recirculating aquaculture system (RAS) is the conventional culture system; it includes a nutrient removal stage with biofilters of aerobic bacteria that favor the nitrification process, although the biofilter technology has operational difficulties such as the decrease in oxygen concentration, accumulation of organic matter and difficulty of back-rinsing, among others. Thus, options have emerged based on the activity of photoautotrophic organisms, taking advantage of the ability of aquatic plants, macro and microalgae, to effectively eliminate nutrients-pollutants (phytodepuration), consuming in addition to carbon and nitrogen, also phosphorus, the latter without the ability to be removed with nitrifying biofilters. However, this treatment strategy has not been used in intensive aquaculture due to the high availability of the area in demand, which exceeds that

required by compact equipment for nitrifying biofiltration. Mixotrophic phytodepuration, which corresponds to the integration of two tertiary wastewater treatment technologies (biofiltration-autotrophic and phytodepuration), could be an efficient response for the treatment of aquaculture wastewater, given the interaction between the organisms involved. For this reason, this review focuses on the potential use of mixotrophic cultivation for the control of nutrients-pollutants in "RAS" or aquaculture wastewater, in addition to contributing to the development of circular economy.

Downloads

Download data is not yet available.

References

Abdel-Raouf N., Al-Homaidan A.A., Ibraheem I.B.M (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences 19, 257-275.

Andreotti, V., Solimeno, A., Chindris, A., Marazzi, F., García, J. (2019). Growth of Tetraselmis suecica and Dunaliella tertiolecta in aquaculture wastewater: numerical simulation with the BIO_ALGAE model. Water Air Soil Pollut. 230 (3). DOI: https://doi.org/10.1007 / s11270-019-4122-0.
Anthonisen A.C., R.C. Loehr, T.B.S. Prakasam, E.G. Srinath (1976). Inhibition of nitrification of ammonia and nitrous acid. Journal Water Pollution Control Federation, 48 (5), pp. 835-852.

Apandi, N.M., Mohamed, R., Al-Gheethi, A., Gani, P., Ibrahim, A. & A.H. Kassim (2019). Microalgal biomass production through phycoremediation of fresh market wastewater and potential applications as aquaculture feeds. Environmental Science and Pollution Research, 26: 3226-3242.

Avnimelech Y., M. Lacher (1979). A tentative nutrient balance for fish ponds Israeli Journal of Aquaculture Bamidgeh, 31: 3-8.

Ayesha S., S. Malik, H. Zhu, J. Xu, M Z. Nawaz, S. Nawaz, Md. A. Alam & M. A. Mehmood (2020). Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Science of the Total Environment 704. 135303. https://doi.org/10.1016/j.scitotenv.2019.135303.

Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating aquaculture systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering. 51: 26-35. https://doi.org/10.1016/j.aquaeng.2012.07.004.

Bartoli M., Nizzoli D., Naldi M., Vezzulli L., Porrello S., Lenzi M., Viaroli P. (2005). Inorganic nitrogen control in wastewater treatment ponds from a fish farm (Orbetello, Italy): Denitrification versus Ulva uptake. Marine Pollution Bulletin 50.

Bashan L., Bashan Y. (2010). Immobilized micro algae for removing pollutants: Review of practical aspects. Bioresource Technology 101:1611-1627.

Bergheim A., T. Asgard (1996). Waste production in aquaculture. D.J. Baird, M.C.M. Beveridge, L.A. Kelly, J.F. Muir (Eds.), Aquaculture and water resource management, Blackwell Science, Oxford, pp. 50-80.

Beveridge M.C.M., M.J. Phillips, R.M. Clarke (1991). A quantitative and qualitative assessment of wastes from aquatic animal production D.E. Brune, J.R. Tomasso (Eds.), Aquaculture and water quality, World Aquaculture Society, Baton Rouge, LA, pp. 506-533.

Boelee N., Temmink H., Janssen M., Buisman C., Wijffels R. (2011). Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms, Water Research, 45: 5925-5933.

Bordel S., Guieysse B., Muñoz R. (2009). Mechanistic Model for the Reclamation of Industrial Wastewaters Using Algal-Bacterial Photobioreactors. Environmental Science and Technology June. 43(9):3200-7

Boyd C. E, C. S. Tucker & B. Somridhivej (2016). Alkalinity and Hardness: Critical but Elusive Concepts in Aquaculture. World Aquaculture Society, 47 (1): 6-4. https://doi.org/10.1111/jwas.12241.

Boyd C. E. (1985). Chemical budgets for channel catfish ponds Transactions of the American Fisheries Society, 11, pp. 291-298.

Bregnballe J. (2015). A Guide to Recirculation Aquaculture. Published by the Food and Agriculture Organization of the United Nations (FAO) and EUROFISH International Organization. ISBN 978-92-5-108776-3, 95 pp.

Calicioglu O. and G.N. Demirer (2017). Carbon-to-Nitrogen and Substrate-to-Inoculum ratio adjustments can improve co-digestion performance of microalgal biomass obtained from domestic wastewater treatment. Environmental Technology, 40(5): 614-624. https://doi.org/10.1080/09593330.2017. 1398784.

Cakir F.Y., M.K. Stenstrom (2005). Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology. Water Research, Volume 39, Issue 17, Pages 4197-4203, ISSN 0043-1354. https://doi.org/10.1016/j.watres.2005.07.042.

Christenson L., Sims R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnology Advances, 29:686-702.

Cokro A. A., L. Yingyu, W. Rohan, C, Yeshi, N. Per. H. and S. Wuertz (2017). Non-denitrifying polyphosphate accumulating organisms obviate requirement for anaerobic condition. Water Research, 111: 393-403, https://doi.org/10.1016/j.watres.2017.01.006.

Crab R., Avnimelech Y., Defoirdt t., Bossier P., Verstraete W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 270: 1-14.

Dauda A.B., Ajadi A., Tola-Fabunmi A.S., Akinwole A.O (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries. 4 (3): 81-88. https://doi.org/10.1016/j.aaf.2018.10.002.

Davidson J., Good C., Welsh C., Summerfelt S. (2011). Abnormal swimming behavior and increased deformities in rainbow trout Oncorhynchus mykiss cultured in low exchange water recirculating aquaculture systems. Aquacultural Engineering 45: 109-117.

Davidson J., Good C., Welsh C., Summerfelt S. (2014). Comparing the effects of high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems. Aquacultural Engineering 59: 30-40.

De Godos I., González C., Becares E., García-Encina P.A., Muñoz R. (2009). Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor, Applied Microbiology and Biotechnology 82: 187-194.

De-Bashan L.E., Hernandez J.-P., Morey T., Bashan Y. (2004). Microalgae growth-promoting bacteria as "helpers" for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater, Water Research, 38: 466-474.

De-Bashan L.E., Moreno M., Hernandez J.-P., Bashan Y. (2002). Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense, Water Research, 36: 2941-2948.

Del Canto, D. (2019). Evaluación del efecto de la adición de nanofibras de celulosa en medios de alginato para fotobiorreactores de consorcios microalgales-bacterianos inmovilizados. Seminario de título para optar al título de Ingeniero en biotecnología marina y acuicultura. Facultad de Ciencias Naturales y Oceanográficas. Universidad de Concepción, 70 pp.

De Pauw N. & E. Van Vaerenbergh (1983). Microalgal Wastewater Treatment Systems: Potentials and Limits, Phytodepuration and the Employment of the Biomass Produced. Centro Ric. Produz, Animali, Reggio Emilia, Italy, pp. 211-287.

Diniz, G.S., Silva, A.F., Araújo, O.Q.F., Chaloub. R.M. (2017). The potential of microalgal biomass production for biotechnological purposes using wastewater resources. Journal of Applied Phycology, 29:821-832. https://doi.org/10.1007/s10811-016-0976-3.

Ebeling J. M., M. B. Timmons & J.J. Bisogni (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture 257, 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019.

Ebeling J. M., M. B. Timmons & J.J. Bisogni (2009). An Engineering Analysis of the Stoichiometry of Autotrophic, Heterotrophic Bacterial Control of Ammonia-Nitrogen in Zero-Exchange Marine Shrimp Production Systems. International Journal of Recirculating Aquaculture, 10: 63-90. http://www.ejournals.ejournals.vtlibraries.net/ijra/article/view/1336/1814.

Eroglu E., Smith S.M., Raston C.L. (2015). Application of various immobilization techniques for algal bioprocesses, in: N.R. Moheimani, M.P. McHenry, K. de Boer, P.A. Bahri (Eds.), Biomass and Biofuels from Microalgae, Springer International Publishing, Switzerland.

FAO (1983). Planificación del Desarrollo de la Acuicultura. Roma. ISBN 92-5-301506-3. http://www.fao.org/3/x5743s/x5743s00.htm#Contents.

FAO (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en.

Fukami K., Nishijima T., Ishida Y. (1997). Stimulative and inhibitory effects of bacteria on the growth of microalgae, Hydrobiologia 358: 185-191.

Goddek S. et al. (2019) Decoupled Aquaponics Systems. In: Goddek S., Joyce A., Kotzen B., Burnell G.M. (eds) Aquaponics Food Production Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-15943-6_8.

Gómez-Serrano, C., Morales-Amaral, M.M., Acién, F.G. (2015) Applied Microbiology and Biotechnology, 99: 6931. https://doi.org/10.1007/s00253-015-6694-y-.

Gonçalves A.L., Pires J.C.M. y M. Simões (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research. 24(Part B): 403-415. https://doi.org/10.1016/j.algal.2016.11.008.

González-Fernández C., Molinuevo-Salces B., García-González M.C. (2011). Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry, Bioresource Technology, 102: 960-966.

Guo Z., Liu Y., Guo H., Yan S., Mu J. (2013). Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production. Journal of Environmental Sciences, 25 (Suppl.): S85-S88. https://doi.org/10.1016/S1001-0742(14)60632-X.

Gupta V., H. Sadegh, M. Yari, R. Shahryari Ghoshekandi, B. Maazinejad & M. Chahardori (2015). Removal of ammonium ions from wastewater A short review in development of efficient methods. Global Journal of Environmental Science and Management, 1(2): 149-158. https://doi.org/10.7508/gjesm.2015.02.007.

Hagopian, D.S and J.G. Riley (1998). A closer look at the bacteriology of nitrification. Aquacultural Engineering, 18:223-244. https://doi.org/10.1016/S0144-8609(98)00032-6.

Hakanson L. (1988). Basic concepts concerning assessments of environmental effects of marine fish farms Nordic Council of Ministers, Copenhagen.

Hameed M., Ebrahim O. (2007). Biotechnological potential uses of immobilized algae, International Journal of Agriculture and Biology. 9:183-192.

Hedges J., Baldock J., Ge´linas Y., Lee C., Peterson M., Wakeham S. (2002). The biochemical and elemental compositions of marine plankton: A NMR perspective. Marine Chemistry 78:47- 63.


He P., Mao B., Lü F., Shao L., Lee D., Chang J. (2013). The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters, Bioresource Technology, 146:562-568.


Hernández-García A., S.B. Velásquez-Orta, E. Novelo, I. Yáñez-Noguez, I. Monje-Ramírez, M. T. Orta Ledesma (2019). Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production. Ecotoxicology and Environmental Safety, 174(15): 435-444. https://doi.org/10.1016/ j.ecoenv.2019.02.052.

Hoffman, J.P. (1998). Wastewater treatment with suspended and nonsuspended algae Journal of Phycology, 34(5): 757-763. https://doi.org/10.1046/j.1529-8817.1998.340757.x. https://www. algaebase.org/search/species/detail/?species_id=q86139d5b294e8aae.

Holby O., P.O.J. Hall (1994). Chemical fluxes and mass balances in a marine fish cage farm. III. Silicon Aquaculture, 120 (3-4):305-318.

Jayakumar, S., Yusoff, M.M., Rahim, M.H.A., Maniam, G.P. & N. Govindan (2017). The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia. Renewable and Sustainable Energy Reviews.72, 33-47. http://dx.doi.org/10.1016/j.rser.2017.01.002.

Jiménez A. (2012) Sistemas de recirculación en acuicultura: una visión y retos diversos para Latinoamérica. Revista Industria Acuícola 8(2). Mazatlan, Sinaloa.

Johnsen F., M. Hillestad, E. Austreng (1993). High energy diets for Atlantic salmon. Effect on pollution S.J. Kaushik, P. Luquet (Eds.), Fish nutrition in practice, INRA, Paris, pp. 391-401.

Kellam S.J., Walker J.M. (1989). Antibacterial activity from marine microalgae in laboratory culture. British Phycological Society, 24, 191-194.

Krom M.D., S. Ellner, J. van Rijn, A. Neori (1995). Nitrogen and phosphorus Cycling and transformations in a prototype ''non-polluting'' integrated mariculture system, Eilat, Israel Marine Ecology Progress Series, 118, pp. 25-36.

Kumar A., Ergas S., Yuan X., Sahu A., Zhang Q., Dewulf J., Malcata F.X., Van Langenhove H. (2010). Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, Trends in Biotechnology, 28: 371-380.

Kwon G, T. L. Linh, J. Joeun, N. Jongchan, J. Youngho, K. Donghan and D. Jahng (2020). Effects of light and mass ratio of microalgae and nitrifiers on the rates of ammonia oxidation and nitrate production. Biochemical Engineering Journal, 161: 107656. https://doi.org/10.1016/j.bej.2020.107656.

Lemarie G., J.L.M. Martin, G. Dutto, C. Garidou (1998). Nitrogenous and phosphorous waste production in a flow-through land-based farm of European seabass (Dicentrarchus zubrux). Aquatic Living Resources, 11 (4): 247-254.

Lin Y., Jing S., Lee D., Wang T. (2002). Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture 209:169-184. https://doi.org/10.1016/S0044-8486(01)00801-8.

Maisashvili A., Bryant H., Richardson J., Anderson D., Wickersham T., Drewery M. (2015). The values of whole algae and lipid extracted algae meal for aquaculture. Algal Research 9:133-142.

Mallick N. (2002). Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review, Biometals 15: 377-390.

Mandal, S.K., Singh, R.P. & Patel, V. (2011). Isolation and Characterization of Exopolysaccharide Secreted by a Toxic Dinoflagellate, Amphidinium carterae Hulburt 1957 and Its Probable Role in Harmful Algal Blooms (HABs). Microbial Ecology, 62: 518-527. https://doi.org/10.1007/s00248-011-9852-5.

Markou G., Georgakakis D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Applied Energy, 88:3389-3401.

Martins C., Pistrin M., Ende S., Eding E., Verreth J. (2009). The accumulation of substances in Recirculating Aquaculture Systems (RAS) affects embryonic and larval development in common carp Cyprinus carpio. Aquaculture, 291: 65-73.

McGriff E.C., McKinney R.E. (1972). The removal of nutrients and organics by activated algae, Water Research. 6: 1155-1164.

Meyen, F.J.F. (1829), Beobachtungen über einige niedere Algenformen. Nova Acta Physico-Medica Academiae Caesareae Leopoldino-Carolinae Naturae, 14: 768-778, pl. XLIII.

Midilli A. Kucuk H.;r and I. Dincer (2012). Environmental and sustainability aspects of a recirculating aquaculture system. Environmental Progress & Sustainable Energy Environ. Prog. Sustainable Energy Adnan. https://doi.org/10.1002/ep.10580.

Mitra D., J. (Hans) van Leeuwen and B. Lamsal (2012). Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Research, 1(1):40-48. https://doi.org/10.1016/j.algal.2012.03.002.

Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S and Rampelotto PH (2019). The Use of Microalgae for Coupling Wastewater Treatment With CO2 Biofixation. Frontiers in Bioengineering and Biotechnology, 7:42. https://doi.org/10.3389/fbioe.2019.00042.

Mook W., Chakrabarti M., Aroua M., Khan G., Ali B., Islam M., Abu Hassan M. (2012). Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination 285: 1-13. https://doi.org/10.1016/ j.desal.2011.09.029.

Mulbry W., Westhead E., Pizarro C., Sikora L. (2005). Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresource Technology 96: 451-458.

Muñoz R., Guieysse B. (2006). Algal-bacterial processes for the treatment of hazardous contaminants: a review, Water Research. 40: 2799-2815.

Muñoz R., Jacinto M., Guieysse B., Mattiasson B. (2005). Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors. Applied Microbiology and Biotechnology 67: 699-707.

Najdenski H.M., Gigova L.G., Iliev I.I., Pilarski P.S., Lukavský J., Tsvetkova I.V., Ninova M.S., Kussovski V.K. (2013). Antibacterial and antifungal activities of selected microalgae and cyanobacteria, International Journal of Food Science & Technology, 48: 1533-1540.

Natrah F.M., Bossier P., Sorgeloos P., Yusoff F.M., Defoirdt T. (2014). Significance of microalgal-bacterial interactions for aquaculture, Reviews in Aquaculture, 6: 48-61.

Olguin, E.J. (2003). Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnology Advances 22: 81-91. https://doi.org/10.1016/s0734-9750(03)00130-7.

ONU (2014). Departamento de Asuntos Económicos y Sociales División de Población. La situación demográfica en el mundo, 2014. Nueva York.

ONU (2019). Departamento de Asuntos Económicos y Sociales División de Población. La situación demográfica en el mundo (junio, 2019). Nueva York. https://population.un.org/wpp/Publications/ Files/WPP2019_PressRelease_ES.pdf.

Pagand P., J.P. Blancheton, J. Lemoalle and C. Casellas (2001). The use of high rate algal ponds for the treatment of marine effluent from a recirculating fish rearing system. Aquacuture Research. 31(10): 729-736. https://doi.org/10.1046/j.1365-2109.2000.00493.x.

Park J., Craggs R., Shilton A. (2011). Wastewater treatment high rate algal ponds for biofuel production, Bioresource Technology. 102: 35-42.

Pedersen L-F, Karin I. Suhr, Johanne Dalsgaard, Per B. Pedersen, Erik Arvin, (2012). Effects of feed loading on nitrogen balances and fish performance in replicated recirculating aquaculture systems. Aquaculture, Volumes 338–34, Pages 237-245, ISSN 0044-8486. https://doi.org/10.1016/j.aquaculture.2012.01.035.

Piedrahita R.H. (2003). Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture, 226 (1-4): 35-44. https://doi.org/10.1016/S0044-8486(03)00465-4.

Pillay T.V.R. (1992). Aquaculture and the environment Wiley, New York.

Pires, J.C.M., Alvim-Ferraz, M.C.M., Martins, F.G. et al. (2013). Wastewater treatment to enhance the economic viability of microalgae culture. Environmental Science and Pollution Research 20: 5096-5105. https://doi.org/10.1007/s11356-013-1791-x.

Porter C.P., M.D. Krom, M.G. Robbins, L. Bricknell, A. Davidson (1987). Ammonia excretion and total N budget for gilthead seabream Sparus aurata in marine fish-ponds and its effect on water quality conditions. Aquaculture, 66 (3-4): 287-297.

Pulkkinen J., Kiuru T., Aalto S., Koskela J. and J. Vielma (2018). Startup and effects of relative water renewal rate on water quality and growth of rainbow trout (Oncorhynchus mykiss) in a unique RAS research platform. Aquacultural Engineering Elsevier 82:38-45. https://doi.org/10.1016/ j.aquaeng.2018.06.003.

Qin G., Liu C., Richman N., Moncur J. (2005). Aquaculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: a pilot study on Coconut Island, Hawaii. Aquacultural Engineering 32: 365-378.

Ramli M., N., Giatsis, C., Md Yusoff, F., Verreth, J., Verdegem, M. (2018). Resistance and resilience of small-scale recirculating aquaculture systems (RAS) with or without algae to pH perturbation. PLoS ONE, 13(4). e0195862. https://doi.org/10.1371/journal.pone.0195862.

Ramli M., N., Verdegem, M. C. J., Yusoff, F. M., Zulkifely, M. K., Verreth, J. A. J. (2017). Removal of ammonium and nitrate in recirculating aquaculture systems by the epiphyte Stigeoclonium nanum immobilized in alginate beads. Aquaculture Environment Interactions, 9: 213-222. https://doi.org/10.3354/aei00225.

Rawat, I., Kumar, R.R., Mutanda, T., Bux, F. (2011). Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88 (10): 3411e3424.

Ruiz A. (2011). Tesina: Puesta en marcha de un cultivo de microalgas para la eliminación de nutrientes de un agua residual urbana previamente tratada anaeróbicamente. Máster Universitario en Ingeniería Hidráulica y Medio Ambiente. Universidad Politécnica de Valencia. https://riunet.upv.es/bitstream/ handle/10251/12831/Ruiz%20Martinez%20Ana%20-%20Tesina%20Fin%20Master%20-%202011.pdf? sequence=1.

Salatia S., G. D'Imporzano, B. Menin, D. Veronesia, B. Scaglia, P. Abbruscato, P. Mariani y F. Adan (2017). Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products. Bioresource Technology, 230: 82-89. https://doi.org/10.1016/j.biortech.2017.01.030.

Shen Y., J. Gao & L. Lic (2017). Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal. Bioresource Technology, 243: 905-913. https://doi.org/10.1016/j.biortech.2017.07.041.

Shengbing H. & X. Gang (2010). Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP). Journal of Hazardous Materials. 178 (1-3): 895-899. https://doi.org/10.1016/j.jhazmat.2010.02.022.

Siddiqui A.B., A.H. Al-Harbi (1999). Nutrient budgets in tanks with different stocking densities of hybrid tilapia Aquaculture, 170: 245-252.

Silva-Benavides A.M., Torzillo G. (2012). Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures, Journal of Applied Phycology, 24: 267-276.

Sindilariu P-D., Christian Wolter and Reinhar Reiter (2008). Constructed wetlands as a treatment method for effluents from intensive trout farms. Aquaculture, 277 (3-4):179-184. https://doi.org/10.1016/ j.aquaculture.2008.02.026.

Sonune A., Ghate R. (2004). Developments in wastewater treatment methods, Desalination 167, 55-63.

Stumm, Werner (2012). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. 3rd ed. Environmental Science and Technology: A Wiley-Interscience Ser. of Texts and Monographs. Web.

Subashchandrabose S.R., Ramakrishnan B., MegharajM., Venkateswarlu K., Naidu R. (2011). Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential, Biotechnology Advances, 29: 896-907.

Summerfelt S.T., A. Zühlke, J. Kolarevic, B.K. Megárd Reiten, R. Selset, X. Gutierrez, B.F. Terjesen (2015). Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors Aquacultural Engineering, 65: 46-54. https://doi.org/10.1016/j.aquaeng.2014.11.002.

Tampion J., Tampion M.D. (1987). Immobilized Cells: Principles and Applications, Cambridge University Press, Cambridge, UK, (1987), 257 pp.

Timmons, M.B., Ebeling, J.M. y Piedrahita, R.H. (2009). Acuicultura en sistemas de recirculación, LLC Edición. Ithaca, USA: Cayuga Aqua Ventures, 959 pp.

Tiron O., C. Bumbac, I. V. Patroescu, V. R. Badescu, & C. Postolache (2015). Granular activated algae for wastewater treatment. Water Science and Technology, 71(6): 832-839. https://doi.org/10.2166/ wst.2015.010.

Unnithan V.V., Unc A., Smith G.B. (2014). Mini-review: a priori considerations for bacteriaalgae interactions in algal biofuel systems receiving municipal wastewaters, Algal Research, 4 (2014) 35-40.

Van Bussel C., Schroeder J., Wuertz S. Schulz C. (2012). The chronic effect of nitrate on production performance and health status of juvenile turbot (Psetta maxima). Aquaculture, 326-329, 163-167.

Van Den Hende S., Vervaeren H., Desmet S., Boon N. (2011). Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnology, 29(1).

Van Rijn J. (2013). Waste treatment in recirculating aquaculture systems. Aquacultural Engineering 53:49- 56.

Vymazal J. (2009). The use constructed wetlands with horizontal sub-surface flow for various types of wastewater, Ecological Engineering, 35 (1):1-17. ISSN 0925-8574. https://doi.org/10.1016/j.ecoleng. 2008.08.016.

Wang H., H. Xiong, H. Zhenglong and X. Zeng (2012). Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids Bioresource Technology, 104: 215-220. https://doi.org/10.1016/j.biortech.2011.11.020.

Wilkie A.C., Mulbry W.W. (2002). Recovery of dairy manure nutrients by benthic freshwater algae, Bioresource Technology, 84:81-91.

Wu Y., J. Zhang, L. Zheng, F. Haiyan, D. Zhineng & X. Yong (2019). Removal of ammonia nitrogen by biochar-alginate-jointly immobilized Chlorella Vulgaris [J]. Chinese Journal of Environmental Engineering, 13 (12): 2863- 2869. https://doi.org 10.12030/ j.cjee.201905096.

Wu, J.-Y., Lay, C.-H., Chen, C.-C. & S.-Y. Wu (2017). Lipid accumulating microalgae cultivation in textile wastewater: Environmental parameters optimization. Journal of the Taiwan Institute of Chemical Engineers 79: 1–6.

Xifan N., Muhammad Mubashar, Shi Zhang, Yufeng Qin, Xuezhi Zhang (2020). Current progress, challenges and perspectives in microalgae-based nutrient removal for aquaculture waste: A comprehensive review. Journal of Cleaner Production. 277: 124209.

Yen H.-W.Y., Hu I.-C., Chen C.-Y., Chang J.-S. (2013). Design of photobioreactors for algal cultivation, in: A. Pandey, D.-J. Lee, Y. Chisti, C.R. Soccol (Eds.), Biofuels from Algae, Elsevier, USA, pp. 23-46.

Published

2021-04-30

Issue

Section

Artículo de Revisión