Bioremediation of shrimp farming effluents by means of autochthonous microbial consortia and native microalgae in Manabí, Ecuador

Authors

  • Jhonny Navarrete Álava Escuela Superior Politécnica Agropecuaria de Manabí. Manuel Félix López. Manabí, Ecuador http://orcid.org/0000-0002-5448-2506
  • Patricio Noles Aguilar Escuela Superior Politécnica Agropecuaria de Manabí. Manuel Félix López. Manabí, Ecuador http://orcid.org/0000-0003-0490-0535
  • Carlos Delgado Villafuerte Escuela Superior Politécnica Agropecuaria de Manabí. Manuel Félix López. Manabí, Ecuador http://orcid.org/0000-0003-3477-092X
  • Nancy Hernández de Guerrero Laboratorio de Ecología, Facultad de Agronomía, Universidad del Zulia, Maracaibo, Venezuela
  • Randi Guerrero-Ríos Laboratorio de Zoología de invertebrados, Facultad de Experimental de Ciencias, Universidad del Zulia. Maracaibo, Venezuela http://orcid.org/0000-0002-7172-9822

DOI:

https://doi.org/10.33936/at.v4i1.4635

Keywords:

Penaeus vannamei, Contamination, Chlamydomonas sp., Desmodesmus sp., Chlorella sp., Trichoderma harzianum, Lactobacillus spp., Saccharomyces cerevisiae

Abstract

Shrimp farming is a constantly growing activity, which has led to the deterioration of ecosystems due to the deposition of effluents that impact the environment, which generates not only damage to ecosystems but also to the same quality of the water that enters the cultivation area. That is why this research seeks to evaluate the efficiency of autochthonous microbial consortia (in vitro) in the bioremediation of the effluent of a shrimp farm located in the Cabello Manabí sector - Ecuador. For this, the following parameters were analyzed: phosphates, ammonium, nitrites, nitrates, suspended solids, dissolved oxygen, temperature, pH, BOD5 and total coliforms. A Completely Randomized Design with one factor and 4 levels was used, using 4 treatments: bacterial consortium (T1) including the yeast Saccharomyces cerevisiae., microalgae consortium (T2)., fungal consortium (T3) made up of Trichoderma harzianum, S. cerevisiae, Lactobacillus acidophilus, Bacillus subtilis, Lactobacillus plantarum., and as (T4) a combined consortium of the three previous treatments. A statistically significant difference was observed in T2 with respect to the other treatments, since thanks to its metabolic activities, the bioremediation of elements such as phosphates, nitrogen compounds and total coliforms was observed, while in the other parameters a significant improvement was not achieved. The process carried out by the microalgae made it possible to adjust the parameters analyzed to water quality criteria to be reused in agricultural and livestock activities and even discharged into freshwater bodies, concluding that the application of microalgae native to the area was useful for the bioremediation of shrimp effluents from the locality.

Downloads

Download data is not yet available.

References

Abisha J., Dhayanath M., Tapas P. (2019). Prevalence and Characterization of Antibiotic Resistance Associated with Escherichia coli Isolated from Cultured Penaeus vannamei from Maharashtra, India. International Journal of Current Microbiology and Applied Sciences 8(07), 1790-1797. https://doi.org/10.20546/ijcmas.2019.807.213

Acién F.G., Gómez-Serrano C., Morales-Amaral M., Fernández-Sevilla J., Molina-Grima E. (2016). Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment?. Applied Microbiology and Biotechnology 100(21), 9013–9022. https://doi.org/10.1007/s00253-016-7835-7

Acién F., Gómez-Serrano C., Fernández-Sevilla J. (2018). Recovery of Nutrients From Wastewaters Using Microalgae. Frontiers in Sustainable Food Systems https://doi.org/10.3389/fsufs.2018.00059

Alejandro A., Loor C. (2018). Tratamiento de aguas residuales de empacadora de pescado con micro-alga Chlorella vulgaris de origen marino mediante fotobiorreactores. Tesis de pregrado. Guayaquil, Universidad de Guayaquil, Ecuador.

Anderson J., Valderrama D., Jory D. (2016). Revisión GOAL de Producción de Camarones en 2016. Global aquaculture alliance. https://www.aquaculturealliance.org/advocate/revision-goal-de-produccion-de-camarones-en-2016/

Babatsouli P., Fodelianakis S., Paranychianakis N., Venieri D., Dialynas M., Kalogerakis N. (2015). Single stage treatment of saline wastewater with marine bacterial–microalgae consortia in a fixed-bed photobioreactor. Journal of Hazardous Materials 292(15), 155-163. https://doi.org/10.1016/j.jhazmat.2015.02.060

Bohutskyi P., Kligerman D., Byers N., Nasr L., Cua C., Chow S., Su C., Tang Y., Betenbaugh M., Bouwer E. (2016). Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth and productivity of Chlorella and Scenedesmus microalgae and their poly-culture in primary and secondary wastewater. Algal Research. 19, 278-290. https://doi.org/10.1016/j.algal.2016.09.010

Boyd C.E., Thunjai T. (2003). Concentrations of major ions in waters of inland shrimp farms in China, Ecuador, Thailand, and the United States. Journal of theWorld Aquaculture Society 34(1), 524-532.

Boyd C. (1990). Food habits of Barbus luteus in main outfall drain, Iraq. Natural Science 5(7), 482-486.

Boyd C. (2000). Effluent Composition & Water Quality Standards. Global Aquaculture Alliance 1(1), 61-66.

Boyd C. (2001). Consideraciones sobre la calidad del suelo en cultivos de camarón. Managua: Imprenta UCA.

Boyd C.T. (1998). Gestión de la calidad del agua para estanque de Acuicultura. Boston, Estados Unidos: Kluwert Academic Publishers.

Breitburg D., LevinL., Oschlies P., Grégoire M., Chavez F., Conley D., Garçon V., Gilbert D., Gutiérrez D., Isensee K., Jacinto G., Limburg K., Montes I., Naqvi S., Pitcher G., Rabalais N., Roman M., Rose K., Seibel B., Telszewski M., Yasuhara M., Zhang J. (2018). Declining oxygen in the global ocean and coastal waters. Science 359, 6371. DOI 10.1126/science.aam7240

Brunton L., Desbois A., Garza M., Wieland B., Mohan C., Häsler B., Tam C., Le P., Thanh Phuong N., Van P., Nguyen-Viet H., Eltholth M., Pham D., Duc P., Linh N., Rich K., Mateus A., Hoque A., Ahad A., Khan M., Adams A., Guitian J. (2019). Identifying hotspots for antibiotic resistance emergence and selection, and elucidating pathways to human exposure: Application of a systems-thinking approach to aquaculture systems. Science of The Total Environment 687, 1344–1356. https://doi.org/10.1016/j.scitotenv.2019.06.134

Camacho-Jiménez L., Álvarez-Sánchez Y., Mejía-Ruíz C. (2020). Silver nanoparticles (AgNPs) as antimicrobials in marine shrimp farming: A review. Aquaculture Reports 18. https://doi.org/10.1016/j.aqrep.2020.100512

Cardoso-Mohedano J., Bernardello R., Sanchez-Cabeza J., Páez-Osuna F., Ruiz-Fernández A., Molino E., Cruzado A. (2016). Reducing nutrient impacts from shrimp effluents in a subtropical coastal lagoon. Science of The Total Environment 571. https://doi.org/10.1016/j.scitotenv.2016.06.140

Castro J., Ceballos B. (2011). Estrategias para optimizar el manejo del alimento en el engorde del camarón blanco del Caribe Litopenaeus schmitti. AquaTIC 35, 20-34.

Curriquiry M., Piaggio M., Sena G. (2019). Guía de análisis costo-beneficio. Aplicación para medidas de adaptación al cambio climático en el sector agropecuario en Uruguay. Ministerio de Agricultura, Ganadería y Pesca, Montevidewo, FAO, PNUD. p.165

Dar R.A., Sharma N., Kaur K., Phutela U.G. (2019). Feasibility of Microalgal Technologies in Pathogen Removal from Wastewater. In: Gupta S.K., Bux F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13913-1_12

Di Rienzo J., Casanoves F., Balzarini M., Gonzalez L., Tablada M., Robledo C. _(2019). InfoStat versión 2019. Grupo InfoStat. Córdoba Argentina, Universidad Nacional de Córdoba. https://www.infostat.com.ar/index.php?mod=page&id=15

Eregno F., Tryland I., Tjomsland I., Kempa M., Heistad A. (2018). Hydrodynamic modeling of recreational water quality using Escherichia coli as an indicator of microbial contaminatio. Journal of Hydrology 561, 179-186. https://doi.org/10.1016/j.jhydrol.2018.04.006

Fajardo P., Bravo R., Navarrete J., Hurtado E. (2020). Técnica de replicación de bacterias en melaza al 5%. In: IX Evento internacional La Universidad en el siglo XXI. (9, 2020, Manabí, Ecuador). Memoria. Manabí, Ecuador. http://sigloxxi.espam.edu.ec/Ponencias/VI/ponencias/5.pdf

Fuentes J., Garbayo I., Cuaresma M., Montero Z., González-del-Valle M., Vílchez C. (2016). Impacto de las interacciones microalgas-bacterias en la producción de biomasa de algas y compuestos asociados. Marine Drugs 14(5), 100. https://doi.org/10.3390/md14050100

García C., Arbid Z., Petrales J. (2015). Growth Kinetics and Nutrient Uptake of Microalgae in Urban Wastewaters with Different Treatment Levelsb. Technology and water sciences 1(1), 49-68.

Gil-Izquierdo A., Pedreño M.A., Montoro-García S., Tárraga-Martínez M., Iglesias P., Ferreres F., Barceló D., Núñez-Delicado E., Gabaldón J.A. (2021). A sustainable approach by using microalgae to minimize the eutrophication process of Mar Menor lagoon. Science of The Total Environment 758(1), 143613. https://doi.org/10.1016/j.scitotenv.2020.143613

González-Ruiz R., Granillo-Luna O., Peregrino-Uriarte A., Gómez-Jiménez S., Yepiz-Plascencia G. (2020). Mitochondrial manganese superoxide dismutase from the shrimp Litopenaeus vannamei: Molecular characterization and effect of high temperature, hypoxia and reoxygenation on expression and enzyme activity. Journal of Thermal Biology 88, 102519. https://doi.org/10.1016/j.jtherbio.2020.102519

Hong A., Hargan K., Williams B., Nuangsaeng B., Siriwong S., Tassawad P., Chatdanai C., Los Huertos M. (2020). Examining molluscs as bioindicators of shrimp aquaculture effluent contamination in a southeast Asian mangrove. Ecological Indicators. 11, 106365. https://doi.org/10.1016/j.ecolind.2020.106365

Katayama T., Nagao N., Kasan N., Khatoon H., Rahman N., Takahashi K., Furuya K., Yamada Y., Wahid M., Jusoh M. (2020). Bioprospecting of indigenous marine microalgae with ammonium tolerance from aquaculture ponds for microalgae cultivation with ammonium-rich wastewaters. Journal of Biotechnology 323, 113 – 120. https://doi.org/10.1016/j.jbiotec.2020.08.001

Kathyayani, S., Poornima, M., Sukumaran, S., Nagavel, S., Muralidhar, M. 2019. Effect of ammonia stress on immune variables of Pacific white shrimp Penaeus vannamei under varying levels of pH and susceptibility to white spot syndrome virus. Ecotoxicology and Environmental Safety, 184(30), 109626. https://doi.org/10.1016/j.ecoenv.2019.109626

Lekshmi B., Joseph R.S., Jos, A., Abinandan S., Shanthakumar S. (2015). Studies on reduction of inorganic pollutants from wastewater by Chlorella pyrenoidosa and Scenedesmus abundans. Alexandria Engineering Journal 54(4), 1291-1296. https://doi.org/10.1016/j.aej.2015.09.013

Luvi U. (2014). Evaluación de los indices microbiológicos y fisicoquímicos en aguas residuales de la ciudad de puno – tratadas con microorganismos nativos. Tesis de pregrado Med. Vet. Puno, Perú, Universidad Nacional del Altiplano.

Mendoza S., Tinoco O., Nieto K. (2016). Evaluación de la carga bacteriana y resistencia a antibióticos de bacterias aisladas en zonas marinas de alta influencia de producción larvaria en Ecuador. Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica 19(38), 137-146. https://doi.org/10.15381/iigeo.v19i38.13580

Meza B. (2013). Efecto del acido indol-3-acetico producido por Azospirillium brasilen se en las enzimas de asimilación del amonio en Chlorella vulgaris, bajo condiciones de coinmovilazación. Tesis de maestría. La Paz, México, Centro de Investigaciones Biológicas del Noroeste S.C.

Millard R., Ellis R., Bateman K., Bickley L., Tyler C., Van Aerle R., Santos E. (2020). How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focussed on White Spot Disease. Journal of Invertebrate Pathology 186, 107369. https://doi.org/10.1016/j.jip.2020.107369

Ordoñez S. (2015). Importancia del sector camaronero de la provincia del Oro en el Ecuador y su aporte a la recaudación total de impuestos, durante el periodo 2010 – 2011. Tesis de maestría. Guayas, Guayaquil, Universidad de Guayaquil.

Paes C., Faria G., Tinoco N., Castro N., Barbarino E., Lourenço S. (2016). Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Latin American Journal of Aquatic Research 44(2), 275-292. doi:10.3856/vol44-issue2-fulltext-9

Park T., Lee T., Lee M., Park C., Lee C., Moon S., Chung J., Cu, R., An Y., Yeom D., Lee S., Lee J., Zoh J. (2018). Development of water quality criteria of ammonia for protecting aquatic life in freshwater using species sensitivity distribution method. Science of The Total Environment 634, 934-940. https://doi.org/10.1016/j.scitotenv.2018.04.018

Peña Casado, L.A. (2017). El Sector Camaronero del Ecuador y las Políticas Sectoriales: 2007 – 2016. Tesis de pregrado Econ. Quito, Ecuador, Pontificia Universidad Católica del Ecuador.

Ramírez A. (2017). Evaluación y determinación de la calidad del agua en las piscinas de la camaronera Boca Salima, para el mejoramiento de la producción de camarón (en línea). Tesis de pregrado Ing. Quím. Loja, Ecuador, Universidad Técnica Partícular de Loja.

Ruiz-Martínez A., Serralta J., Seco A., Ferrer J. (2015). Effect of temperature on ammonium removal in Scenedesmus sp. Bioresource Technology, 191, 346-349. doi:10.1016/j.biortech.2015.05.070

Sandifer P., Hopkings,J. (1995). Conceptual design of a sustainable pond-based shrimp culture system. Aquacultural Engineering 15(1), 41-52. https://doi.org/10.1016/0144-8609(95)00003-W

Sandoval J., Malo B., Cartagena J., Fernádez D. (2018). Laboratory evaluation of the organic matter removal capacity of Chlorella vulgaris in wastewater from the Salitre WWTP. Revista Mutis 8(1), 34 - 42. https://doi.org/10.21789/22561498.1368

Saravanan A., Senthil P., Varjani S., Jeevanantham S., Yaashikaa P., Thamarai P. Abirami B., George C. (2021). A review on algal-bacterial symbiotic system for effective treatment of wastewater. Chemosphere (271), 129540. https://doi.org/10.1016/j.chemosphere.2021.129540

Schveitzer R., Arantes R., Costódio P., Santo C., Vinatea L., Seiffert W., Andreatta E. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering 56, 59-70. DOI 10.1016/j.aquaeng.2013.04.006.

Sonnenholzner S. (2014). Oxígeno disuelto y su importancia en acuicultura: Sistemas de aireaciòn para mejorar la productividad de los sistemas acuícolas. In: Congreso Internacional de Acuicultura en Aguas Continentales – ESPE. (4, 2014, Quito, Ecuador). Memoria. Quito, Ecuador.

Sun S., Ge Z., Zhao Y., Hu C., Zhang H., Ping L. (2016). Performance of CO2 concentrations on nutrient removal and biogas upgrading by integrating microalgal strains cultivation with activated sludge. Energy 97, 229-237. https://doi.org/10.1016/j.energy.2015.12.126

Texto Unificado de Legislación Secundaria de Medio Ambiente (TULSMA). (2017). Decreto Ejecutivo 3516. Quito, Ecuador. 407 p. http://www.competencias.gob.ec/wp-content/uploads/2017/06/01NOR2003-TULSMA.pdf

Ullua R. (2015). El efecto de dos porcentajes de recirculación de agua en el cultivo de camarón (Litopenaeus vannamei). Tesis de pregrado Ing. Acuicultor. Machala, Ecuador, Universidad Técnica de Machala.

Varshney P., Mikulic P., Vonshak A., Beardall J., Wangikar P. (2015). Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184, 363-372. doi:10.1016/j.biortech.2014.11.0

Published

2022-03-07