Hydrodynamic simulation of a shallow raceway tank for the culture of the red urchin Loxechinus albus (Molina, 1782)

Authors

  • Ariel Araya Salinas Centro de Investigación Marina Quintay CIMARQ, Universidad Andrés Bello, Viña del Mar, Chile. https://orcid.org/0000-0002-8366-8908
  • Pablo Bonati Díaz Centro de Investigación Marina Quintay CIMARQ, Universidad Andrés Bello, Viña del Mar, Chile. https://orcid.org/0000-0003-3616-4122
  • Juan Manuel Estrada Arias

DOI:

https://doi.org/10.33936/at.v4i3.5365

Keywords:

Computational fluid dynamics, Onshore sea urchins` culture , Water quality

Abstract

A computational fluids dynamics - CFD simulation was carried out on a shallow tank design for the sea urchin (Loxechinus albus) culture, with the purpose of observing the hydrodynamic behavior regarding geometry, water inlet, homogenization, and removal potential of biosolids, which would influence the quality of the water required for the culture. The pond design had a length-width ratio of 6:1 and a maximum depth of 0.28 m. The simulation was performed with continuous flow and another with discharges of 4 and 12 gpm (15.1 and 45.4 L min-1, respectively) using Autodesk® CFD 2021 software. The results showed that in both flows high turbulence caused by the inlet velocity was generated, which quickly dissipated giving way to velocities between 1 and 16 cm s-1. The movement of water within most of the system did not exceed 2 cm s-1. The simulated conditions favored mixing and homogenization, but the entrainment of particles depended on the flow rate. The results obtained allow us to propose and incorporate improvements to the original design before carrying out field tests in a real tank, with the aim of improving both the quality of the water and the well-being of the specimens in culture.

Downloads

Download data is not yet available.

References

Andrew N.L., Agatsuma Y., Ballesteros E. et al. (2002). Status and management of world sea urchin fisheries. Oceanography and Marine Biology: An Annual Review. 40, 343–425.

ANSYS. 2018. ANSYS FLUENT User's Guide Release 18.2. ANSYS Inc.

Arriagada Salinas A.E. 2012. Evaluación del efecto de distintos sistemas de ingreso de agua, eductor y rociador vertical, sobre el tiempo de mezcla en un estanque circular. Tesis de pregrado. Pontificia Universidad Católica de Valparaíso, Chile. 61 pp.

Bernasconi I. 1953. Monografía de los equinoideos argentinos. An. Mus. His. Nat. Mont. 6:23–25.

Cengel Y., Cimbala J., 2014. Mecánica de Fluidos. 4° edición. Mcgraw-Hill. 1024 pp.

Chun C, Vinci B. y Timmons M. 2018. Computational fluid dynamics characterization of a novel mixed cell raceway design. Aquacultural Engineering. 81:19–32.

Clark, H.L. 1948. A Report on the Echini of the Warmer Eastern Pacific, based on the collections of the "Velero III". Allan Hancock Pac. Exp. 8 (5): i-xii. 225-351, pls. 35-71.

Daggett T, Pearce C. Robinson S. 2006. A comparison of three land-based containment systems for use in culturing green sea urchins, Strongylocentrotus droebachiensis (Müller) (Echinodermata: Echinoidea). Aquaculture Research. 37:339-350.

Dayton P. 1985. The structure and regulation of some South American kelp communities. Ecol Monogr. 55:447–468.

FAO. 2022. Estadísticas de pesca y acuicultura. Capturas mundiales 1950-2020 (FishStatJ). In: FAO División de Pesca y Acuicultura [en línea]. Roma. Actualización 2022. www.fao.org/fishery/statistics/software/fishstatj/es

Fenucci J. 1967. Contribución al conocimiento del crustáceo decápodo brachiuro Pinnaxodes chilensis (M. Edwards) comensal de Loxechinus albus (Molina) (Echinodermata: Echinoidea). Physis. 27:125–133.

Hadiyanto H., Elmore S., Van Gerven T., Stankiewicz A. 2016. Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chemical Engineering Journal. 217:231–239.

Harris L. y Eddy S. 2015. Sea Urchin Ecology and Biology. Pages 3-24 in Brown N., Eddy S. (eds). Echinoderm Aquaculture. Wiley-Blackwell. Hoboken, New Jersey. https://docplayer.net/43621601-Water-quality-requirements-for-culture-of-the-green-sea-urchin-strongylocentrotus-droebachiensis.html.

Labatut R., Ebeling J., Bhaskaran R., Timmons M. 2015. Modeling hydrodynamics and path/residence time of aquaculture-like particles in a mixed-cell raceway (MCR) using 3D computational fluid dynamics (CFD). Aquacultural Engineering. 67:39–52.

Larraín A. 1975. Los equinoideos regulares, fósiles y recientes de Chile. Gayana Zoología (Chile) 35:1-161.

Li W., Cheng X., Xie J., Wang Z., Yu D. 2019 Hydrodynamics of an in-pond raceway system with an aeration plug-flow device for application in aquaculture: an experimental study. R. Soc. Open Sci. 6:182061. DOI: 10.1098/rsos.182061

Liu Y., Liu B., Lei J., Guan C., Huang B. 2016. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems. Chinese Journal of Oceanology and Limnology. 35(4):912-920. DOI: 10.1007/s00343-017-6051-3.

Masaló I. 2008. Hydrodynamic Characterization of aquaculture tanks and design criteria for improving self-cleaning properties. Doctoral thesis. Technical University of Catalonia, España. 109 p.

Moreno C.A., Molinet C. 2013. El paradigma de la distribución batimétrica de Loxechinus albus (Molina) en Chile. Revista Chilena de Historia Natural. 86:225-227.

Mortensen A, Siikavuopio D., James P. 2012. Water quality requirements for culture of the green sea urchin, Strongylocentrotus droebachiensis. World Aquaculture. June: 46-50. https://doczz.net/doc/672187/water-quality-requirements-for-culture-of-the-green-sea-u.

Oca J., Masaló I., Reig L. 2004. Comparative analysis of flow patterns in aquaculture rectangular tanks with different water inlet characteristics. Aquacultural Engineering. 31:221–236.

Oiestad V. 1999. Shallow raceways as a compact, resource- maximizing farming procedure for marine fish species. Aquaculture Research, 30:831-840.

Pérez A., Morriconi E., Boy C., Calvo J. 2008. Seasonal changes in energy allocation to somatic and reproductive body components of the common cold temperate sea urchin Loxechinus albus in a Sub-Antarctic environment. Polar Biol. 31:443–449

Ranade V. 2002. Computational Flow Modeling for Chemical Reactor Engineering. Academic Press, pp. 452.

Rasmussen M., McLean, E. 2004. Comparison of two different methods for evaluating the hydrodynamic performance of an industrial-scale fish-rearing unit. Aquaculture. 242:397–416.

Schuhbauer A., Brickle P., Arkhipkin A. 2010. Growth and reproduction of Loxechinus albus (Echinodermata: Echinoidea) at the southerly peripheries of their species range, Falkland Islands (South Atlantic). Mar. Biol. 157:1837–1847

SERNAPESCA. 2022. Anuario Estadístico de Pesca y Acuicultura 2021. http://www.sernapesca.cl/informacion-utilidad/anuarios-estadisticos-de-pesca-y-acuicultura

Sompech K, Chisti Y., Srinophakun T. 2012. Design of raceway ponds for producing microalgae. Biofuel 3:387–397.

Stockton K, Moffitt C., Watten B., Vinci B. 2016. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and Burrows pond rearing system. Aquacultural Engineering. 74:52–61.

Sun J., Chiang F-S. 2015. Use and Exploitation of Sea Urchins. Pages 25-45 in Brown N. and Eddy S. editors. Echinoderm Aquaculture. Wiley-Blackwell. Hoboken, New Jersey

Timmons M, Ebeling J., Wheaton F., Summerfelt S., Vinci B. 2002. Sistemas de recirculación para la acuicultura. Fundación Chile. 748 p.

Vallejos H. 2016. Análisis adimensional para determinar tiempos de mezcla y caracterización hidrodinámica en un estanque circular de uso acuícola. Tesis de pregrado. Universidad Católica de la Santísima Concepción, Chile. 81 p.

Watten B., Honeyfield D., Schwartz M. 2000. Hydraulic characteristics of a rectangular mixed-cell rearing unit. Aquacultural Engineering. 24:59–73.

White, P., Rigby M. 2003. Shallow raceways design. Akvaplan-niva SA, Berguen Office, Noruega.https://www.academia.edu/10232191/Shallow_raceway_design_for_aquaculture.

Wong K., Piedrahita R. 2003. Prototype Testing of the Appurtenance for Settleable Solids In-raceway SeparaTion (ASSIST). Aquacultural Engineering. 27:273 – 293.

Zhang Q., Xue S., Yan C., Wu X., Wen S., Cong W. 2015. Installation of flow deflectors and wing baffles to reduce dead zone and enhance flashing light effect in an open raceway pond. Bioresource Technology. 198:150–156.

Published

2022-12-23