Tableau Public, a tool for data visualization and business intelligence tool for shrimp farming

Authors

  • Jonathan Proaño Morales 1Departamento de Matemáticas y Estadística, Universidad Técnica de Manabí, Portoviejo, Ecuador. 2Departamento de Procesamiento de Datos y Diseño de Encuestas, Prodata & Design, 130103, Portoviejo, Ecuador. https://orcid.org/0000-0002-7140-5318
  • Gabriela Pazmiño Moreira Departamento de Procesamiento de Datos y Diseño de Encuestas, Prodata & Design, 130103, Portoviejo, Ecuador. https://orcid.org/0000-0002-8443-9189
  • Eulalia Ibarra Mayorga Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Portoviejo, Ecuador. https://orcid.org/0000-0001-6617-5960

DOI:

https://doi.org/10.33936/at.v5i3.5840

Keywords:

Artificial intelligence, biofloc, shrimp, aquaculture

Abstract

Using Tableau Public allows the analysis of large amounts of data and present them in a visually understandable way. In a demonstrative way, the water quality data of 12 shrimp production tanks was used, and phosphate (PO4), ammonium (NH4), nitrite (NO2) and nitrate (NO3) were evaluated in order to visualize the dynamics of the data in time. For this, heat maps were used to interpret the results, which were as follows: Tableau is an easy-to-use tool that allows you to visualize the data in an agile and fast way. This allowed analyzing the dynamics of compounds in some tanks and identifying what were their concentration from the first days of culture, as is the case of PO4.On the other hand, it was evidenced that ammonium had high concentrations at the beginning of shrimp production and decreased as the culture days progressed. Based on this, it is evidenced that this tool allows visualizing the data in an agile way and allows an efficient decision-making, which is enhanced if the data records are connected to a source in real time. Furthermore, it was appreciated that Tableau is an excellent tool for data cleaning, analysis, and visualization.

Downloads

Download data is not yet available.

References

Arquitectura Tableau (2023). Arquitectura del servidor - Tableau Blueprint. Tableau. https://help.tableau.com/current/blueprint/es-es/bp_server_architecture.htm

Addepalli L., Sakinam S., Lokhande G., Waqas A. (2023). A Comprehensive Review of Data Visualization. International Journal of Computer Engineering in Research Trends,10: 10-14. https://www.ijcert.org/issue_des.php?id=754

Cano O., Mendoza E. (2022). Propuesta de una herramienta de business intelligence para mejorar la gestión comercial en una empresa de la industria pesquera. Tesis de pregrado, Escuela Profesional de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos, Perú. https://cybertesis.unmsm.edu.pe/handle/20.500.12672/17737

ChartBlocks (2023). Online Chart Builder - ChartBlocks. ChartBlocks. https://www.chartblocks.io/

Fezarudin F.Z., Illyas M.I., Qasem F.A. (2017). Data Visualization for Human Capital and Halal Training in Halal Industry Using Tableau Desktop. In: Mohamed Ali M., Wahid H., Mohd Subha N., Sahlan S., Md. Yunus M., Wahap A. (eds) Modeling, Design and Simulation of Systems. AsiaSim 2017. Communications in Computer and Information Science, vol 752. Springer, Singapore. https://doi.org/10.1007/978-981-10-6502-6_51

Gartner (2022). Gartner Magic Quadrant for Analytics and Business Intelligence Platforms. https://www.gartner.com/en/documents/3996944.

Guerra C., Quimí R., Burgos F. (2021). Aplicación de una herramienta de análisis de data operativa en el proceso de engorde de camarón basada en inteligencia empresarial. Tesis de pregrado, Facultad de Ingeniería Marítima y Ciencias del Mar, Escuela Superior Politécnica Del Litoral, Ecuador. https://www.dspace.espol.edu.ec/handle/123456789/53515

Lea B., Yu W., Min H. (2018). Data visualization for assessing the biofuel commercialization potential within the business intelligence framework. Journal of Cleaner Production, 188: 921-941. https://doi.org/10.1016/j.jclepro.2018.02.288.

Lousa A., Pedrosa I., Bernardino J. (2019). Evaluation and Analysis of Business Intelligence Data Visualization Tools, 2019. 14th Iberian Conference on Information Systems and Technologies (CISTI), 1-6. https://doi.org/10.23919/CISTI.2019.8760677

Muhammad F. (2019). Comparison study of the development of self-service business intelligence between power bi and tableau desktop (case study: microsoft adventure works). Industrial Engineering, 23(4): 1075868. http://hdl.handle.net/123456789/15275

Nair L., Shetty, S., Shetty, S. (2016). Interactive visual analytics on Big Data: Tableau vs D3.js. Journal of e-Learning and Knowledge Society, 12(4). Italian e-Learning Association. https://www.learntechlib.org/p/173675/.

Qlik. (2023). QlikView – Analítica y cuadros de mando interactivos y eficaces. Qlik. https://www.qlik.com/es-es/products/qlikview

Raina V., Krishnamurthy S. (2022). Data Visualization. In: Building an Effective Data Science Practice. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-7419-4_15

RAWGraphs. (2023). RAWGraphs - The missing link between spreadsheets and data visualization. RAWGraphs. https://www.rawgraphs.io/

Tableau. (2023). Business Intelligence and Analytics Software Tableau. Tableau. https://www.tableau.com/

Published

2023-09-06