Cambios Hematológicos en Orthopristis rubra (Cuvier 1830) (Haemulidae: Haemulinae) durante la Transición del Entorno Natural al Confinamiento

Authors

  • Mauro Nirchio Universidad Técnica de Machala
  • César A Fischer Godoy 1Escuela de Ciencias Aplicadas del Mar, Núcleo de Nueva Esparta, Universidad de Oriente, Apartado 174, Porlamar, Isla de Margarita, Venezuela Aqua SERVICES, Maracay, Las Delicias, Estado Aragua, Venezuela

DOI:

https://doi.org/10.33936/at.v6i1.6246

Keywords:

Blood parameters, stress, acclimatization, fish physiology, , environmental transitions

Abstract

En esta investigación, se analiza la dinámica de las respuestas hematológicas en Orthopristis rubra abordando los impactos durante la captura, el transporte y el estrés inducido por el confinamiento. Abarcando 504 horas, el estudio captura los cambios en las variables hematológicas durante la aclimatación de esta especie en ambientes artificiales. Los resultados obtenidos de dos grupos de peces, capturados y examinados con cuatro meses de diferencia, respaldan la reproducibilidad de los cambios hematológicos observados. Las notables fluctuaciones de parámetros como la concentración total de hemoglobina, el hematocrito, el recuento de glóbulos rojos, la concentración media de hemoglobina corpuscular y el recuento de glóbulos blancos ponen de manifiesto respuestas de estrés agudo en las primeras horas, seguidas de una estabilización, indicativa de una adaptación satisfactoria a los retos que plantea el cautiverio. Estos indicadores fiables de aclimatación son cruciales para evaluar el bienestar de los peces en entornos artificiales. Las variaciones hidrológicas críticas, incluidos los niveles de oxígeno y las disparidades de temperatura, afectan significativamente a los parámetros hematológicos. La capacidad de los peces para responder y mantener valores elevados tras la aclimatación pone de relieve su habilidad para afinar los mecanismos fisiológicos. El estudio no sólo mejora nuestra comprensión de las respuestas de O. rubra, sino que también sienta las bases para futuras investigaciones sobre los mecanismos subyacentes que rigen el estrés y la aclimatación en los peces.

Downloads

Download data is not yet available.

References

Abdel-Tawwab M., Monier M. N., Hoseinifar S. H., Faggio C. (2019). Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. Fish Physiology and Biochemistry, 45(3), 997–1013. https://doi.org/10.1007/s10695-019-00614-9

Achilike N. M., Wusu, A. D. (2019). Hematological profile of Clarias gariepinus reared in different culture systems. Journal of Agriculture and Environment, 15(1), 165–177. https://www.ajol.info/index.php/jagrenv/article/view/235064

Aguirre-Guzman G., Carvajal-de-la-Fuente V., Neri-Coronado M., Loredo-Osti J., Rábago-Castro J. L. (2016). Hematological and clinical chemistry changes induced by acute stress during handling and capture of catfish (Ictalurus punctatus). Revista MVZ Cordoba, 21(2), 5345–5354. https://doi.org/10.21897/rmvz.601

Ahmed I., Reshi Q. M., Fazio F. (2020). The influence of the endogenous and exogenous factors on hematological parameters in different fish species: a review. Aquaculture International: Journal of the European Aquaculture Society, 28(3), 869–899. https://doi.org/10.1007/s10499-019-00501-3

Ahmed I., Sheikh Z. A. (2020). Comparative study of hematological parameters of snow trout Schizopyge plagiostomus and Schizopyge niger inhabiting two different habitats. The European Zoological Journal, 87(1), 12–19. https://doi.org/10.1080/24750263.2019.1705647

Akinrotimi O. A., Agokei E. O., Aranyo, A. A. (2012). Changes in blood parameters of Tilapia guineensis exposed to different salinity levels. Journal of Environmental Engineering and Technology, 1(2), 4–12.

Akinrotimi O. A., Uedeme-Naa B., Agokei, E. O. (2010). Effects of acclimation on haematological parameters of Tilapia guineensis (Bleeker, 1862). Science World Journal, 5(4). http://www.scienceworldjournal.org/article/view/8431

Aldrin J. F., Messager J. L., Mevel, M. (1979). Essai sur le stress de transport chez le saumon coho juvenile (Oncorhynchus kisutch). Aquaculture, 17(4), 279–289. https://doi.org/10.1016/0044-8486(79)90084-X

Ali A., Azom M. G., Sarker B. S., Rani H., Alam M. S., Islam M. S. (2024). Repercussion of salinity on hematological parameters and tissue morphology of gill and kidney at early life of tilapia. Aquaculture and Fisheries, 9(2), 256–264. https://doi.org/10.1016/j.aaf.2022.04.006

Bagheri T., Imanpour M. R. (2011). The efficacy, physiological responses and hematology of Persian Sturgeon, Acipenser persicus, to clove oil as an anesthetic agent. Turkish Journal of Fisheries and Aquatic Sciences, 11(3). https://dergipark.org.tr/en/pub/trjfas-ayrildi/issue/13272/160332

Chen H., Luo, D. (2023). Application of haematology parameters for health management in fish farms. Reviews in Aquaculture, 15(2), 704–737. https://doi.org/10.1111/raq.12753

Cho H. C., Kim J. E., Kim H. B., Baek H. J. (2015). Effects of water temperature change on the hematological responses and plasma cortisol levels in growing of red spotted grouper, Epinephelus akaara. Development and reproduction, 19(1), 19–24. https://doi.org/10.12717/dr.2015.19.1.019

D’Autilia R., Falcucci M., Hull V., Parrella L. (2004). Short time dissolved oxygen dynamics in shallow water ecosystems. Ecological Modelling, 179(3), 297–306. https://doi.org/10.1016/j.ecolmodel.2004.02.009

Davison W. G., Cooper C. A., Sloman K. A., Wilson R. W. (2023). A method for measuring meaningful physiological variables in fish blood without surgical cannulation. Scientific Reports, 13(1), 899. https://doi.org/10.1038/s41598-023-28061-w

Esmaeili M. (2021). Blood performance: a new formula for fish growth and health. Biology, 10(12). https://doi.org/10.3390/biology10121236

Faggio C., Fedele G., Arfuso F., Panzera M., Fazio F. (2014). Haematological and biochemical response of Mugil cephalus after acclimation to captivity. Cahiers de Biologie Marine, 55(1), 31–36. https://dx.doi.org/10.21411/CBM.A.1BADE283

Fazio F. (2019). Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture , 500, 237–242. https://doi.org/10.1016/j.aquaculture.2018.10.030

Fazio F., Ferrantelli V., Fortino G., Arfuso F., Giangrosso G., Faggio C. (2015). The influence of acute handling stress on some blood parameters in cultured sea bream (Sparus aurata Linnaeus, 1758). Italian Journal of Food Safety, 4(1), 4174. https://doi.org/10.4081/ijfs.2015.4174

Fazio F., Marafioti S., Arfuso F., Piccione G., Faggio C. (2013). Influence of different salinity on haematological and biochemical parameters of the widely cultured mullet, Mugil cephalus. Marine and Freshwater Behaviour and Physiology, 46(4), 211–218. https://doi.org/10.1080/10236244.2013.817728

Froese R., Pauly D. (2023). Orthopistis rubra. FishBase. World Wide Web Electronic Publication. https://www.fishbase.se/search.php

Hickey C. R., Jr. (1982). Comparative hematology of wild and captive cunners. Transactions of the American Fisheries Society, 111(2), 242–249.

Lawrence M. J., Raby G. D., Teffer A. K., Jeffries K. M., Danylchuk A. J., Eliason E. J., Hasler C. T., Clark T. D., Cooke S. J. (2020). Best practices for non-lethal blood sampling of fish via the caudal vasculature. Journal of Fish Biology, 97(1), 4–15. https://doi.org/10.1111/jfb.14339

Marceniuk A. P., Caires R. A., Machado L., Cerqueira N. N. C. D., DE S Serra R. R. M., Oliveira C. (2019). Redescription of Orthopristis ruber and Orthopristis scapularis (Haemulidae: Perciformes), with a hybridization zone off the Atlantic coast of South America. Zootaxa, 4576(1), zootaxa.4576.1.5. https://doi.org/10.11646/zootaxa.4576.1.5

Moraes G., Avilez I. M., Altran A. E., Barbosa C. C. (2002). Biochemical and hematological responses of the banded knife fish Gymnotus carapo (Linnaeus, 1758) exposed to environmental hypoxia. Brazilian Journal of Biology = Revista Brasleira de Biologia, 62(4A), 633–640. https://doi.org/10.1590/s1519-69842002000400011

Mudiganti R. M. R., Devi M., Hussain A. J., Bora R., Kumar K., Jayaprakashvel M. (2014). Effect of Environmental Stresses on Lipid and and Haematological Profiles of the Air Breathing Catfish Clarias batrachus (Linn.). American Journal of PharmTech Research, 4(5), 771–781. https://ajptr.com/archive/volume-4/october-2014-issue-5

Nabi N., Ahmed I., Wani G. B. (2022). Hematological and serum biochemical reference intervals of rainbow trout, Oncorhynchus mykiss cultured in Himalayan aquaculture: Morphology, morphometrics and quantification of peripheral blood cells. Saudi Journal of Biological Sciences, 29(4), 2942–2957. https://doi.org/10.1016/j.sjbs.2022.01.019

Nirchio M., Gaviria J. I., Pérez, J. (1987). Blood parameters of the grunt Orthopristis ruber (Cuvier, 1830) (Pisces: Pomadasyidae). Boletín del Instituto Oceanográfico de Venezuela, Universidad de Oriente, 26(1&2), 73–80.

Pinto D., Pellegrin L., Nitz L. F., da Costa S. T., Monserrat J. M., Garcia, L. (2019). Haematological and oxidative stress responses in Piaractus mesopotamicus under temperature variations in water. Aquaculture Research, 50(10), 3017–3027. https://doi.org/10.1111/are.14260

Rocha C. M., Caviedes A. J. P., Perez A. P. (2018). Respuestas hematológicas, hepáticas y esplénicas al estrés de tilapias en jaulas y libres en el embalse de Betania, Colombia. Revista AquaTIC, 0(49), 8–20. http://www.revistaaquatic.com/ojs/index.php/aquatic/article/view/305

Santos L. N., Neves R. A. F., Koureiche A. C., Lailson-Brito J. (2021). Mercury concentration in the sentinel fish species Orthopristis ruber: Effects of environmental and biological factors and human risk assessment. Marine Pollution Bulletin, 169, 112508. https://doi.org/10.1016/j.marpolbul.2021.112508

Schulte P. M. (2014). What is environmental stress? Insights from fish living in a variable environment. The Journal of Experimental Biology, 217(Pt 1), 23–34. https://doi.org/10.1242/jeb.089722

Scott A. L., Rogers W. A. (1981). Haematological effects of prolonged sublethal hypoxia on channel catfish Ictalurus punctatus (Rafinesque). Journal of Fish Biology, 18(5), 591–601. https://doi.org/10.1111/j.1095-8649.1981.tb03799.x

Seibel H., Baßmann B., Rebl, A. (2021). Blood will tell: what hematological analyses can reveal about fish welfare. Frontiers in Veterinary Science, 8, 616955. https://doi.org/10.3389/fvets.2021.616955

Seixas L. B., Conte-Junior C. A., Dos Santos A. F. G. N. (2021). How much fluctuating asymmetry in fish is affected by mercury concentration in the Guanabara Bay, Brazil? Environmental Science and Pollution Research International, 28(9), 11183–11194. https://doi.org/10.1007/s11356-020-11240-x

Simide R., Richard S., Prévot-D’Alvise N., Miard T., Gaillard S. (2016). Assessment of the accuracy of physiological blood indicators for the evaluation of stress, health status and welfare in Siberian sturgeon (Acipenser baerii) subject to chronic heat stress and dietary supplementation. International Aquatic Research, 8(2), 121–135. https://doi.org/10.1007/s40071-016-0128-z

Sokal R. R., Rohlf, F. J. (2011). Biometry: The Principles and Practice of Statistics in Biological Research. W.H. Freeman and Company.

Sopinka N. M., Donaldson M. R., O’Connor C. M., Suski C. D., Cooke S. J. (2016). 11 - Stress Indicators in Fish. In C. B. Schreck, L. Tort, A. P. Farrell, & C. J. Brauner (Eds.), Fish Physiology, 35, 405–462. https://doi.org/10.1016/B978-0-12-802728-8.00011-4

Swift D. J. (1981). Changes in selected blood component concentrations of rainbow trout, Salmo gairdneri Richardson, exposed to hypoxia or sublethal concentrations of phenol or ammonia. Journal of Fish Biology, 19(1), 45–61. https://doi.org/10.1111/j.1095-8649.1981.tb05810.x

Torres P., Tort L., Planas, J. Flos R. (1986). Effects of confinement stress and additional zinc treatment on some blood parameters in the dogfish Scyliorhinus canicula. Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology, 83(1), 89–92. https://doi.org/10.1016/0742-8413(86)90017-4

Witeska M., Kondera E., Bojarski B. (2023). Hematological and hematopoietic analysis in fish toxicology-A review. Animals, 13(16). https://doi.org/10.3390/ani13162625

Witeska M., Kondera E., Ługowska K., Bojarski B. (2022b). Hematological methods in fish – Not only for beginners. Aquaculture, 547, 737498. https://doi.org/10.1016/j.aquaculture.2021.737498

Witeska M., Lugowska K., Kondera E. (2016). Reference values of hematological parameters for juvenile Cyprinus carpio. Bulletin of the European Association of Fish Pathologists, 36(4), 169–180.

Yamamoto K., Itazawa Y., Kobayashi H. (1983). Erythrocyte supply from the spleen and hemoconcentration in hypoxic yellowtail. Marine Biology, 73(3), 221–226. https://doi.org/10.1007/BF00392246

Yanuhar U., Raharjo D. K. W., Caesar N. R., Junirahma N. S. (2021). Hematology response of catfish (Clarias sp.) as an indicator of fish health in Tuban Regency. IOP Conference Series: Earth and Environmental Science, 718(1), 012059. https://doi.org/10.1088/1755-1315/718/1/012059

Published

2024-03-05