Grasa de ave como fuente principal de lípidos en una mezcla para reemplazar el aceite de pescado en dietas de Oreochromis niloticus

English

Authors

  • Eulalio Arambul Muñoz Universidad Autónoma de Baja California
  • Español Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Km 107 carretera Tijuana-Ensenada, 22860 Ensenada BC, México.
  • Español Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Km 107 carretera Tijuana-Ensenada, 22860 Ensenada BC, México.

DOI:

https://doi.org/10.33936/at.v6i3.7146

Keywords:

alimentos libres de pescado , acuicultura, alimentos processados, harina de ave

Abstract

El presente trabajo tuvo como objetivo probar la grasa de ave como la principal fuente de grasa para reemplazar el aceite de pescado en dietas para tilapia Oreochromis niloticus. Con este propósito, se utilizó una mezcla de grasa de ave (71 %), grasa de palmiste (25 %), una fuente rica en ácido láurico (12:0), y aceite de microalgas (4 %), rico en DHA y EPA, para reemplazar el aceite de pescado. Las dietas isoproteicas e isolipídicas (37,5 % de proteína cruda y 8 % de lípidos crudos) contenían cuatro niveles de la mezcla de grasas para reemplazar el aceite de pescado: 0, 1,65, 3,32 y 5 % de la dieta total, y se usaron para alimentar juveniles de tilapia (6,04 ± 0,13 g) cuatro veces al día en grupos por triplicado. Seis semanas después, todos los peces fueron pesados individualmente, y se halló una fuerte correlación mediante un análisis de regresión polinómica, mostrando una menor tasa de conversión alimenticia con mayores niveles de la mezcla de grasa de ave (r²=0,933), mientras que se registró un mayor crecimiento (r²=0,762). El análisis de ácidos grasos en el hepatopáncreas no mostró presencia de ácido láurico contenido en la grasa de palmiste, pero sí una reducción significativa en los ácidos oleico y linoleico, principales fuentes de energía. Por otro lado, se observó una acumulación significativa de ácido palmítico (16:0). Además, el índice hepatosomático fue significativamente positivo con mayores cantidades de la mezcla de grasa de ave (r²=1), lo que revela la capacidad de mantener un mayor peso en el hepatopáncreas, a pesar de no haberse observado diferencias claras en la histología obtenida de los diferentes tratamientos dietéticos. Este estudio concluyó que la grasa de ave puede sustituir al aceite de pescado en dietas para tilapia, con una relación claramente positiva con el desempeño general de O. niloticus

Downloads

Download data is not yet available.

References

Abdel-Tawwab M., Ahmad M.H, Khattab Y.A.E., Shalaby A.M.E. (2010). Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture, 298:267–274. https://doi.org/10.1016/j.aquaculture.2009.10.027

Adedeji O.B., Adeyemo G.A., Adeparusi E.O., Adegbola T.A., Fagade O.E. (2016). Evaluation of Palm Kernel Oil (Elaeis guineensis) as a replacement for Fish Oil in the Diet of Nile Tilapia, Oreochromis niloticus Fingerlings. Pakistan Journal of Nutrition, 15(9):834-840.

Adjanke A., Tona K., Toko I.I., Gbeassor M. (2021). Effect of palm kernel meal (Elaeis guineensis, Jacq, 1763) in the diet on digestive transit and some serum parameters in Nile tilapia (Oreochromis niloticus, Linnaeus, 1758). International Journal of Biological and Chemical Sciences, 15(5):1725-1733. https://doi.org/10.4314/ijbcs.v15i5.2

AOAC (2015). Official Methods of Analysis. Association of Analytical Chemists, Arlington, VA, USA.

Apraku A., Huang X., Yusuf A., Cornel A., Ayisi C.L., Asiedu B. (2019). Impact of dietary oil replacement on muscle and liver enzymes activity, histomorphology and growth-related genes on Nile tilapia. Comparative Biochemistry and Physiology Part C: Toxicology Pharmacology, 223:15-25. https://doi.org/10.1016/j.cbpc.2019.05.002

Apraku A., Liu L., Ayisi C.L. (2017). Trends and status of dietary coconut oil in aquaculture feeds. Reviews in Fisheries Science Aquaculture, 25(2):126-132. https://doi.org/10.1080/23308249.2016.1245275

Apraku A., Liu L., Leng X., Rupia E.J., Ayisi C.L. (2017). Evaluation of blended virgin coconut oil and fish oil on growth performanc and resistance to Streptococcus iniae challenge of nile tilapia (Oreochromis niloticus). Egyptian Journal of Basic and Applied Sciences, 4(3):175-84. https://doi.org/10.1016/j.ejbas.2017.06.002

Ayisi C.L., Alhassan E.H., Sarfo F. (2021). Substitution of fish oil with palm kernel oil in diets of Oreochromis niloticus fry: effects on growth, feed utilization and economic estimates. Indonesian Aquaculture Journal, 16(2):99-107. https://doi.org/10.15578/iaj.16.2.2021.99-107

Azevedo R.V.D., Tonini W.C.T., Braga L.G.T. (2013). Palm oil and palm kernel cake in diets for juvenile Nile tilapia. Pesquisa Agropecuária Brasileira, 48:1028-1034. https://doi.org/10.1590/S0100-204X2013000800031

Babalola T.O., Apata D.F., Omotosho J.S., Adebayo M.A. (2011). Differential effects of dietary lipids on growth performance, digestibility, fatty acid composition and histology of African catfish (Heterobranchus longifilis) fingerlings. Food and Nutrition Sciences, 2:11-21. https://doi.org/10.4236/fns.2011.21002

Bu X.Y., Wang Y.Y., Chen F.Y., Tang B.B., Luo C.Z., Wang Y.,Yang Y.H. (2018). An evaluation of replacing fishmeal with rapeseed meal in the diet of Pseudobagrus ussuriensis: growth, feed utilization, nonspecific immunity, and growth‐related gene expression. Journal of the World Aquaculture Society, 49(6):1068-1080. https://doi.org/10.1111/jwas.12470

Bureau, D.P., & Meeker, D.L. (2010). Terrestrial animal fats. Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Boca Raton, FL, 245-266. https://doi.org/10.1201/9781439808634-c8

Castro-Gómez P., Fontecha J., Rodrígues-Alcalá L.M. (2014). A high-performance direct transmethylation method for total fatty acids assessment in biological and foodstuff samples. Talanta 12:518–523. https://doi.org/10.1016/j.talanta.2014.05.051

Cnaan A., Tinman S., Avidar Y., Ron M., Hulata G. (2004). Comparative study of biochemical parameters in response to stress in Oreochromis aureus, O. mossambicus and two strains of O. niloticus. Aquaculture research, 35(15):1434-1440. https://doi.org/10.1111/j.1365-2109.2004.01167.x

Craig S.R., Helfrich L.A., Kuhn D., Schwarz M.H. (2017). Understanding fish nutrition, feeds, and feeding. Virginia Cooperative Extension, Virginia State University, USA.

de Lucas Rodrigues Bittencourt N., Maria Molinari L., de Oliveira Scoaris D., Bocchi Pedroso R., Vataru Nakamura C., Ueda Nakamura T., Dias Filho P. (2003). Haematological and biochemical values for Nile tilapia Oreochromis niloticus cultured in semi-intensive system. Hemoglobin (g/dl), 10(3.09): 6-58.

Eeckhout W., De Paepe M. (1994). Total phosphorus, phytate-phosphorus and phytase activity in plant feedstuffs. Animal Feed Science and Technology, 47(1-2):19-29. https://doi.org/10.1016/0377-8401(94)90156-2

Emehinaiye P.E., Ezeri G.N., Abolagba O.J. 2018. Evaluation of the use of palm kernel oil as an alternative to fish oil in the diet of Nile tilapia (Oreochromis niloticus) juveniles. Aquaculture Research, 49(11):3715-3722.

FAO (2020). The State of World Fisheries and Aquaculture 2020. Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/3/ca9229en/ca9229en.pdf

FAO (2018). The State of World Fisheries and Aquaculture 2018. Meeting the sustainable development goals. Rome: Food and Agriculture Organization of the United Nations.

Folch J., Lees M., Sloane-Stanley G.H., (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 276:497–507. https://doi.org/10.1016/S0021-9258(18)64849-5

Gule T.T., Geremew A. (2022). Dietary strategies for better utilization of aquafeeds in Tilapia farming. Aquaculture Nutrition, 2022. https://doi.org/10.1155/2022/9463307

Jiao J.G., Liu Y., Zhang H., Li L.Y., Qiao F., Chen L.Q., Du Z.Y. (2020). Metabolism of linoleic and linolenic acids in hepatocytes of two freshwater fish with different n-3 or n-6 fatty acid requirements. Aquaculture, 515:734595. https://doi.org/10.1016/j.aquaculture.2019.734595

Kader M.A., Bulbul M., Abol-Munafi A.B., Sheriff S.B., Keong N.W., Ali M.E., Koshio S. (2018). Effect of replacing fishmeal with palm kernel meal supplemented with crude attractants on growth performance of Macrobrachium rosenbergii. Aquaculture, Aquarium, Conservation Legislation, 11(1):158-166.

Khieokhajonkhet A., Ngoenthong W., Inyawilert W., Aeksiri N., Kaneko G., Ratanasut K., Phromkunthong W. (2024). Assessment of chaya meal (Cnidoscolus chayamansa) as an alternative feed ingredient for Nile tilapia (Oreochromis niloticus): Growth performance, hematology, histology, and growth-and appetite-related gene expression. Aquaculture, 593: 741288. https://doi.org/10.1016/j.aquaculture.2024.741288

Luo Y., Jiao J.G., Jin A.H., Hussain D., Chen L.Q., Qiao F., Du Z.Y. (2023). Metabolism of linoleic and linolenic acids in muscle cells of two freshwater fish with n-3 or n-6 fatty acid requirements. Aquaculture, 563:738994. https://doi.org/10.1016/j.aquaculture.2022.738994

Medale F., Kaushik S. (2009). Protein sources in feed for farmed fish. Cahiers Agricultures, 18(2):103-111.

Nakharuthai C., Rodrigues P.M., Schrama D., Kumkhong S., Boonanuntanasarn S. (2020). Effects of different dietary vegetable lipid sources on health status in Nile tilapia (Oreochromis niloticus): Haematological indices, immune response parameters and plasma proteome. Animals, 10:1377. https://doi.org/10.3390/ani10081377

Napier J.A., Betancor M.B. (2023). Engineering plant-based feedstocks for sustainable aquaculture. Current Opinion in Plant Biology, 71:102323. https://doi.org/10.1016/j.pbi.2022.102323

Natt M.P., Herrick C.A. (1952). A new blood diluent for counting the erythrocytes and leucocytes of the chicken. Poultry Science, 31(4):735-738. https://doi.org/10.3382/ps.0310735

Ng W.K., Law A.T., Wong S.H., Lim C.C., Lim S.J. (2018). Potential use of a vegetable and animal oil blend in the diet of tilapia, Oreochromis niloticus. Aquaculture Nutrition, 24(3):1063-1070.

Ochang S.N., Fagbenro O.A., Adebayo O.T. (2007). Growth performance, body composition, haematology and product quality of the African catfish (Clarias gariepinus) fed diets with palm oil. Pakistan Journal of Nutrition, 6:452-459. https://doi.org/10.3923/pjn.2007.452.459

Oliver L., Dietrich T., Marañón I., Villarán M.C., Barrio R.J. (2020). Producing omega-3 polyunsaturated fatty acids: a review of sustainable sources and future trends for the EPA and DHA market. Resources, 9(12):148. https://doi.org/10.3390/resources9120148

Peng M.O., Xu W., Mai K., Zhou H., Zhang Y., Liufu Z., Ai Q. (2014). Growth performance, lipid deposition and hepatic lipid metabolism related gene expression in juvenile turbot (Scophthalmus maximus L.) fed diets with various fish oil substitution levels by soybean oil. Aquaculture, 433:442-449. https://doi.org/10.1016/j.aquaculture.2014.07.005

Ragaza J.A., Hossain M.S., Koshio S., Ishikawa M., Yokoyama S., Kotzamanis Y., Kumar V. (2021). Brown seaweed (Sargassum fulvellum) inclusion in diets with fishmeal partially replaced with soy protein concentrate for Japanese flounder (Paralichthys olivaceus) juveniles. Aquaculture Nutrition, 27(4):1052-1064. https://doi.org/10.1111/anu.13246

Sankian Z., Khosravi S., Kim Y.O., Lee S.M. (2019). Total replacement of dietary fish oil with alternative lipid sources in a practical diet for mandarin fish, Siniperca scherzeri, juveniles. Fisheries and Aquatic Sciences 22:1-9. https://doi.org/10.1186/s41240-019-0123-6

Santigosa E., Constant D., Prudence D., Wahli T., Verlhac‐Trichet V. (2020). A novel marine algal oil containing both EPA and DHA is an effective source of omega‐3 fatty acids for rainbow trout (Oncorhynchus mykiss). Journal of the World Aquaculture Society 51(3):649-665. https://doi.org/10.1111/jwas.12699

Sukasem N., Ruangsri J. (2007). Effects of palm kernel cake (PKC) on growth performance, blood components and liver histopathology of sex reversed red tilapia (Oreochromis niloticus). J. Sci. Technol., 29:1283–1299.

Svoboda M., Kouřil J., Hamáčková J., Kalab P., Savina L., Svobodova Z., Vykusova B. (2001). Biochemical profile of blood plasma of tench (Tinca tinca L.) during pre-and postspawning period. Acta Veterinaria Brno, 70(3):259-268. https://doi.org/10.2754/avb200170030259

Tacon A. G. (2020). Trends in global aquaculture and aquafeed production: 2000–2017. Reviews in Fisheries Science Aquaculture, 28(1):43-56. https://doi.org/10.1080/23308249.2019.1649634

Tacon A. G., Metian M. (2015). Feed matters: satisfying the feed demand of aquaculture. Reviews in Fisheries Science Aquaculture, 23(1):1-10. https://doi.org/10.1080/23308249.2014.987209

Tejada de Hernández I. (1992). Control de calidad y análisis de alimentos para animales (No. SF95. T44 1992.).

Turchini G.M., Ng W.K., Tocher D.R. (2009). Fish oil replacement and alternative lipid sources in aquaculture feeds. Reviews in Aquaculture, 1:10-57. https://doi.org/10.1111/j.1753-5131.2008.01001.x

Wattanakul W., Thongprajukaew K., Hahor, W. Suanyuk, N. (2021). Optimal Replacement of Soybean Meal with Fermented Palm Kernel Meal as Protein Source in a Fish Meal-Soybean Meal-Based Diet of Sex Reversed Red Tilapia (Oreochromis niloticus× O. mossambicus). Animals 11(8):2287. https://doi.org/10.3390/ani11082287

Yoneyama Y., Yonemori Y., Murata M., Ohnuki H., Hibi K., Hayashi T., Endo H. (2009). Wireless biosensor system for real-time cholesterol monitoring in fish “Nile tilapia”. Talanta, 80(2):909-915. https://doi.org/10.1016/j.talanta.2009.08.014

Yossa, R., Ahmad Fatan, N., Fairchild, J., Schrama, J. W. (2022). Apparent digestibility coefficients of local palm kernel cakes, rice bran, maize bran and sago flour in the GIFT strain of Nile tilapia (Oreochromis niloticus). Journal of Applied Aquaculture, 34(2):502-526. https://doi.org/10.1080/10454438.2020.1869635

Yuangsoi B., Klahan R., Charoenwattanasak S. (2014). Partial replacement of protein in soybean meal by moringa seed cake (Moringa oleifera) in bocourti’s catfish (Pangasius bocourti). Songklanakarin Jounal of Science of Technology, 36(2):125-135.

Zaragoza O.D.R., Rodríguez M.H., Bückle Ramirez L.F. (2008). Thermal stress effect on tilapia Oreochromis mossambicus (Pisces: Cichlidae) blood parameters. Marine and Freshwater Behaviour and Physiology, 41(2):79-89. https://doi.org/10.1080/10236240801896223

Published

2024-12-17