Evaluation of the effect of commercial probiotic bacteria on larval cultures of Penaeus vannameiEvaluation of the effect of commercial probiotic bacteria on larval cultures of Penaeus vannamei

Authors

  • Clara Esperanza Lozano Farias Universidad Técnica Estatal de Quevedo, Facultad de Posgrado, Quevedo, Ecuador
  • Fernando Abasolo
  • Angie Milena Gallo Saldarriaga 3Unidad Educativa Nuestra Señora de Fátima, Investigador independiente, Quevedo, Ecuador
  • Danna Belén Castillo Quijije Universidad Técnica Estatal de Quevedo, Facultad de Ciencias Agrarias y Forestales, Quevedo, Ecuador

Keywords:

Beneficial interactions, bacteria, Vibrio spp., animal health

Abstract

The intensification of Penaeus vannamei aquaculture has increased the occurrence of bacterial diseases and water quality deterioration, resulting in significant economic losses. In this context, the use of probiotics emerges as a sustainable alternative to enhance larval health and productive performance. This study evaluated the effect of commercial probiotics on water quality, production performance, and microbial health in the larval culture of P. vannamei. Four treatments were implemented: a control without probiotics and three with different bacterial combinations (Probiotics A, B, and C). Physicochemical, microbiological, growth, survival, and biomass parameters were monitored, along with a cost-benefit analysis. Results indicated that the treatment with Probiotic C (T4), composed of Bacillus sp., Enterococcus sp., Pediococcus sp., Thiobacillus sp., and Paracoccus sp., was the most effective. This treatment achieved the highest final larval density (50 PL/g), average weight (20 mg), final length (9.0 mm), biomass (3.889 g), uniformity (92%), and survival rate (70%). In contrast, the control group showed lower values. Moreover, T4 substantially reduced pathogenic bacteria such as Vibrio alginolyticus, V. vulnificus, V. parahaemolyticus, and Pseudomonas sp., as well as fungi, compared to the control. The cost-benefit analysis revealed that although T4 had the highest cost per thousand ($0.45), it also generated the greatest productive yield, justifying its application. These findings support the use of probiotics as an effective tool to optimize growth, larval health, and profitability in aquaculture systems, promoting more sustainable practices.

Downloads

Download data is not yet available.

References

Altamirano Ruiz C.R. (2009). Evaluación de la efectividad del Probiótico “Sanolife Pro” en estanques de cultivo de camarones “Litopenaeus vannamei” en la Granja Acuacultura Torrecillas, Chinandega, Nicaragua, en el periodo comprendido de Junio a Septiembre, 2008. Tesis de pregrado. Universidad Nacional Autónoma de Nicaragua, León, Nicaragua. http://riul.unanleon.edu.ni:8080/jspui/bitstream/123456789/1846/1/212294.pdf

Aragón-Noriega E.A. (2016). Crecimiento individual de camarón blanco Litopenaeus vannamei (Boone, 1931) y camarón azul Litopenaeus stylirostris (Stimpson, 1874) (Decapoda: Penaeidae) con un enfoque multi-modelo. Latin American Journal of Aquatic Research 44(3):480–486. https://doi.org/10.3856/vol44-issue3-fulltext-6

Arzola González J.F., Flores Campaña L.M., Izabal Ceja A., Gutiérrez Rubio Y. (2008). Crecimiento de camarón blanco (Litopenaeus vannamei) en un estanque rústico a baja salinidad. AquaTIC 28, 8–15. https://www.redalyc.org/articulo.oa?id=49418026002

Boonanuntanasarn S., Wongsasak U., Pitaksong T., Chaijamrus S. (2016). Effects of dietary supplementation with β-glucan and synbiotics on growth, haemolymph chemistry, and intestinal microbiota and morphology in the Pacific white shrimp. Aquaculture Nutrition 22(4):837–845. https://doi.org/10.1111/ANU.12302

Calderón Y.A., Cruz A.A., Naderkhani G. (2023). Efectos de Bacillus sp. como bacterias biofloculantes en el cultivo del camarón. Revista de Producción Animal 35(3):93–107. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-79202023000300093

Campa-Córdova A.I., Yenni-Morales C., Guzmán-Murillo M.A., Aguirre-Guzman G. (2020). Evaluación de la respuesta productiva e inmune en juveniles de camarón Litopenaeus vannamei alimentado con mezclas probióticas. Revista de Biología Marina y Oceanografía 55(1):73–78. https://doi.org/10.22370/RBMO.2020.55.1.2394

Cárdenas Canizalez A. (2024). Efecto de bacterias heterótrofas con actividad desnitrificante aeróbica y agente biocontrol en el cultivo de juveniles de Penaeus vannamei. Tesis de maestría. Universidad Autónoma de Sinaloa, Culiacán, México. http://repositorio.uas.edu.mx/jspui/handle/DGB_UAS/724

Coello Galvez R.P. (2021). Efectos de la Aplicación de Bacterias Biorremediadoras (Bacillus sp.) al Agua de Estanque Acuicolas, Frente a Vibrios Patogenos. Tesis de pregrado. Universidad Técnica de Machala, Ecuador. http://repositorio.utmachala.edu.ec/handle/48000/16578

Decamp O., Moriarty D.J.W., Lavens P. (2008). Probiotics for shrimp larviculture: Review of field data from Asia and Latin America. Aquaculture Research 39(4):334–338. https://doi.org/10.1111/J.1365-2109.2007.01664.X

FAO. (2016). El estado mundial de la pesca y de la acuicultura. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Roma. https://www.fao.org/3/i5555s/i5555s.pdf

González Salas R., Vidal del Río M., Pimienta Concepción I. (2021). Uso intensivo de antibióticos profilácticos en la acuicultura: un problema creciente para la salud humana y animal. Revista Universidad y Sociedad 13(2):204–210. https://redi.cedia.edu.ec/document/296469

Gutiérrez-Falcón A, Padilla D., Ramos Sosa, M.J, Martín Barrasa, J.L, Acosta-Hernández B., Sánchez Henao A., … Real F. (2020). Caracterización in vitro de nuevas cepas bacterianas con potencial efecto probiótico cruzado contra la vibriosis en especies de peces relevantes para la acuicultura marina. Journal of Applied Animal Research 48(1):553–558. https://doi.org/10.1080/09712119.2020.1844714

Hai N.V. (2015). The use of probiotics in aquaculture. Journal of Applied Microbiology 119(4):917–935. https://doi.org/10.1111/JAM.12886,

Indariyanti N., Aprilia T. (2022). Probiotic Supplementation in Feed on Nutritional Quality, Feed Efficiency, and the Growth of Vannamei Shrimp (Litopenaeus vannamei). IOP Conference Series: Earth and Environmental Science 1012(1):012044. https://doi.org/10.1088/1755-1315/1012/1/012044

Intriago P., Medina A., Espinoza J., Enriquez X., Arteaga K., Aranguren L.F., Shinn A.P. (2023). Acute mortality of Penaeus vannamei larvae in farm hatcheries associated with the presence of Vibrio sp. carrying the VpPirAB toxin genes. Aquaculture International 31(6):3363-3382. https://doi.org/10.1007/s10499-023-01129-0

Kuebutornye F.K.A., Abarike E.D., Lu Y., Hlordzi V., Sakyi M.E., Afriyie G., Wang Z., Li Y., Xie C.X. (2020). Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiology and Biochemistry 46(3):819–841. https://doi.org/10.1007/S10695-019-00754-Y

López L.G.L., Galeano M.J.A., Salinas M.L.R., Sirias M.C.H., González J.E.M. (2015). Crecimiento de los camarones Litopenaeus vannamei en etapa de juveniles en dos sistemas de alimentación: 1.-dieta comercial combinada con melaza y 2.-dieta comercial mezclada con semolina y melaza. Universitas (León) 6(1):121-130.

Melgar Valdes C.E., Barba Macías E., Álvarez-González C.A., Tovilla Hernández C., Sánchez A.J. (2013). Efecto de microorganismos con potencial probiótico en la calidad del agua y el crecimiento de camarón Litopenaeus vannamei (Decapoda: Penaeidae) en cultivo intensivo. Revista de Biología Tropical 61(3):1215–1228. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442013000400018&lng=en&nrm=iso&tlng=es

Monier M.N., Kabary H., Elfeky A., Saadony S., El-Hamed N.N.B.A., Eissa M.E.H., Eissa E.S.H. (2023). The effects of Bacillus species probiotics (Bacillus subtilis and B. licheniformis) on the water quality, immune responses, and resistance of whiteleg shrimp (Litopenaeus vannamei) against Fusarium solani infection. Aquaculture International 31(6):3437–3455. https://doi.org/10.1007/S10499-023-01136-1/METRICS

Morales-Covarrubias M.S., Ruiz-Luna A., Pereira Moura-Lemus A., Solís Montiel V.T., Conroy G. (2011). Prevalencia de Enfermedades de Camarón Blanco (Litopenaeus vannamei) Cultivado en Ocho Regiones de Latinoamérica. Revista Científica, Facultad de Ciencias Veterinarias -LUZ 21(5):434- 446.

Morales Q.V., Cuéllar-Anjel J. (2014). Guía Técnica: Patología e Inmunología de Camarones Penaeidos. OIRSA, Panamá, Rep. de Panamá. 382 (Vol. 01, Issue 01).

Moreno Herrera C.X. (2002). Polimorfismo intracromosómico de los genes del rRNA 16S y presencia de genes relacionados con patogenicidad en aislados ambientales del género vibrio en la costa chilena. Tesis de doctorado. Universidad de Chile, Santiago, Chile. https://repositorio.uchile.cl/handle/2250/106683

Nayak S.K. (2010). Probiotics and immunity: a fish perspective. Fish & Shellfish Immunology 29(1):2–14. https://doi.org/10.1016/J.FSI.2010.02.017

Olmos Soto J. (2021). Feed intake improvement, gut microbiota modulation and pathogens control by using Bacillus species in shrimp aquaculture. World Journal of Microbiology and Biotechnology 37(2):1–7. https://doi.org/10.1007/S11274-020-02987-Z/METRICS

Pérez-Chabela M. de L., Alvarez-Cisneros Y.M., Soriano-Santos J., Pérez-Hernández M.A. (2020). Los probióticos y sus metabolitos en la acuicultura. Una Revisión. Hidrobiológica 30(1):93–105. https://doi.org/10.24275/UAM/IZT/DCBS/HIDRO/2020V30N1/PEREZ

Reyes G., Andrade B., Betancourt I., Panchana F., Solórzano R., Preciado C., Sorroza L., Trujillo L.E., Bayot B. (2023). Microbial signature profiles of Penaeus vannamei larvae in low-survival hatchery tanks affected by vibriosis. PeerJ 11:e15795. https://doi.org/10.7717/peerj.15795

Rojo-Arreola L., García-Carreño F., Romero R., Díaz Domínguez L. (2020). Proteolytic profile of larval developmental stages of Penaeus vannamei: An activity and mRNA expression approach. PLoS ONE 15(9):e0239413. https://doi.org/10.1371/journal.pone.0239413

Soltani M., Ghosh K., Hoseinifar S.H., Kumar V., Lymbery A.J., Roy S., Ringø E. (2019). Genus Bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture 27(3):331–379. https://doi.org/10.1080/23308249.2019.1597010

Soriano Aquino R.R. (2017). Efecto de la harina de espirulina Arthrospira platensis como complemento alimenticio sobre el crecimiento y supervivencia de la zoea y mysisde Litopenaeus vannamei. Tesis de pregrado. Universidad Nacional de Tumbes, Perú.

Toledo A., Castillo N.M., Carrillo O., Arenal A. (2018). Probióticos: una realidad en el cultivo de camarones. Artículo de revisión. Revista de Producción Animal 30(2):57–71. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-79202018000200009&lng=es&nrm=iso&tlng=es

Villamil Díaz L., Martínez Silva M.A. (2016). Probióticos Como Herramienta Biotecnológica en el Cultivo de Camarón: Reseña. Bulletin of Marine and Coastal Research 38(2):165–187. https://doi.org/10.25268/bimc.invemar.2009.38.2.177

Vinatea L., Muedas W., Arantes R. (2011). The impact of oxygen consumption by the shrimp Litopenaeus vannamei according to body weight, temperature, salinity and stocking density on pond aeration: A simulation. Acta Scientiarum - Biological Sciences 33(2):125–132. https://doi.org/10.4025/actascibiolsci.v33i2.7018

Xue M., Wen C., Liang H., Ding M., Wu Y., Li X. (2016). In vivo evaluation of the effects of commercial Bacillus probiotics on survival and development of Litopenaeus vannamei larvae during the early hatchery period. Aquaculture Research 47(5):1661–1669.

Zhu X.H., Zhang S., Zhou L., Ao S., Tang H., Zhou Y., Chen Q., Gao X., Jiang Q., Zhang X. (2021). Probiotic potential of Bacillus velezensis: Antimicrobial activity against non-O1 Vibrio cholerae and immune enhancement effects on Macrobrachium nipponense. Aquaculture 541:736817. https://doi.org/10.1016/J.AQUACULTURE.2021.736817

Zokaei Far H., Roos C., Saad B., Daud H.M., Harmin S.A., Shakibazadeh S. (2009). Effect of Bacillus subtilis on the growth and survival rate of shrimp (Litopenaeus vannamei). African Journal of Biotechnology 8(14):3369–3376. https://www.ajol.info/index.php/ajb/article/view/61100

Published

2025-11-25