Effects of dry pelleted diets on growth and survival of the edible sea urchin Arbacia stellata (Blainville, 1825) for an echinoculture feasibility
DOI:
https://doi.org/10.33936/at.v4i3.5373Palabras clave:
Alimentación alternativa, Nutrición, Tasas de crecimiento , Supervivencia, Arbaciidae, EcuadorResumen
El erizo de mar, Arbacia stellata, es parte de nuevos escenarios bioalimentarios para el empleo como nutracéuticos de organismos marinos del mundo sin uso actual como alimento. Se realizó una prueba de alimentación durante 98 días (en un diseño experimental completamente aleatorizado simple) usando especímenes de A. stellata (n= 88; 29,3 ± 0,2 mm y 14,5 ± 0,3 g de diámetro de la testa y peso inicial promedios, respectivamente) para evaluar la eficacia de tres dietas isoproteicas que contenían fuentes de proteínas de crustáceos y vegetales en diferentes combinaciones, con el propósito de desarrollar una dieta seca formulada de bajo costo que promoviera su crecimiento (en diámetro de la testa y peso), rendimiento gonadal y supervivencia. Se elaboraron la Dieta 1 (camarones, Penaeus vannamei), Dieta 2 (Sacha Inchi, Plukenetia volubilis) y Dieta 3 (dieta mixta). Se utilizaron seis individuos por tratamiento. Se alimentaron al 1% con relación al peso corporal promedio por envase (0,86-0,97 g), cada 48 h en condiciones ad libitum. Las dietas 2 y 3 produjeron un rendimiento significativamente mejor para el crecimiento en el diámetro de la testa 31,58 ± 0,21 mm, SGR= 0,0066 ± 0,0001 mm mo-1 y 31,18 ± 0,35 mm, SGR= 0,0064 ± 0,0001 mm mo-1, respectivamente. Similares resultados de crecimiento en peso se obtuvieron con la dieta 2 y 3, 19,13 ± 0,52 g, SGR= 0,0413 ± 0,0019 g mo-1 y 19,08 ± 0,48 g, SGR= 0,0377 ± 0,0017 g mo-1, respectivamente. La tasa de conversión alimenticia y el índice gonadal fueron mejores con las dietas 2 y 3. En general, el rendimiento más bajo se obtuvo con la dieta 1. La supervivencia fue superior al 54% y el grupo mantenido en inanición murió el día 42. Este estudio indica que las dietas basadas en plantas y la combinación de varias fuentes de proteína en las dietas produjo respuestas biológicas notables en el crecimiento de A. stellata.
Descargas
Citas
Agnetta D., Badalamenti F., Ceccherelli G., Di Trapani F., Bonaviri C., Gianguzza P. (2015). Role of two co-occurring Mediterranean Sea urchins in the formation of barren from Cystoseira canopy. Estuarine, Coastal and Shelf Science, 152:73-77. https://doi.org/10.1016/j.ecss.2014.11.023
Agnetta D., Bonaviri C., Badalamenti F., Scianna C., Vizzini S., Gianguzza P. (2013). Functional traits of two co-occurring sea urchins across a barren/forest patch system. Journal of Sea Research, 76:170-177. https://doi.org/10.1016/j.seares.2012.08.009
Andrew N.L., Agatsuma Y., Ballesteros E., Bazhin A.G., Creaser E.P., Barnes D.K.A., Botsford L.W., Bradbury A., Campbell A., Dixon J.D., Einarsson S., Gerring P.K., Hebert K., Hunter M., Hur S.B., Johnson C.R., Juinio-Meñez M.A., Kalvass P., Miller R.J., Moreno C.A., Palleiro J.S., Rivas D., Robinson S.M.L., Schroeter S.C., Steneck R.S., Vadas R.L., Woodby D.A., Xiaoqi Z. (2002). Status and management of world sea urchin fisheries. Oceanography and Marine Biology: An Annual Review, 40:343-425.
AOAC (Association of Official Analytical Chemists) (2016). Official methods of analysis (20th Edition). Association of Official Analytical Chemists. VA: Association of Official Analytical Chemists. Arlington, United States of America.
Araújo-Dairiki T.B., Chaves F.C.M., Dairiki J.K. (2018). Seeds of sacha inchi (Plukenetia volubilis, Euphorbiaceae) as a feed ingredient for juvenile tambaqui, Colossoma macropomum, and matrinxã, Brycon amazonicus (Characidae). Acta Amazonica, 48:32-37. http://dx.doi.org/10.1590/1809-4392201700753
Aurand L.W., Woods E.A., Wells M.R. (1987). Food composition and analysis. Springer Science+Business Media. New York, United States of America.
Bay-Schmith B.E. (1981). Ciclo anual de reproducción de Arbacia spatuligera (Valenciennes, 1846) en Bahía de Concepción. Boletín de la Sociedad de Biología de Concepción, 51:47-59.
Brasseur L., Hennebert E., Fievez L., Caulier G., Bureau F., Tafforeau L., Flammang P., Gerbaux P., Eeckhaut I. (2017). The roles of spinochromes in four shallow water tropical sea urchins and their potential as bioactive pharmacological agents. Marine Drugs, 15(6):1-18. https://doi.org/10.3390/md15060179
Cabral de Oliveira M. (1991). Survival of seaweeds ingested by three species of tropical sea urchins from Brazil. Hydrobiologia, 222:13-17. https://doi.org/10.1007/BF00017495
Carranco M.E., Calvo C., Arellano L., Pérez-Gil F., Ávila E., Fuente B. (2003). Inclusión de la harina de cabezas de camarón Penaeus sp. en raciones para gallinas ponedoras. Efecto sobre la concentración de pigmento rojo de yema y calidad de huevo. Interciencia, 28(6):328-333.
Carrillo O. (1994). Producto multienzimático del hepatopancreas de camarón reactivo y suplemento dietético. In: Mendoza A., Cruz-Suárez L.E., Ricque M.D. (Eds). Memorias del Segundo Simposium Internacional de Nutrición Acuícola. Monterrey, México. pp: 21-26.
Eddy S.D., Brown N.P., Kling A.L., Watts S.A., Lawrence A. (2012). Growth of juvenile green sea urchins, Strongylocentrotus droebachiensis, fed formulated feeds with varying protein levels compared with a macroalgal diet and a commercial abalone feed. Journal of the World Aquaculture Society, 43(2):159-173. https://doi.org/10.1111/j.1749-7345.2012.00560.x
Espinosa-Chaurand L.D., Silva-Loera A., García-Esquivel Z., López-Acuña L.M. (2015). Uso de harina de cabeza de camarón como reemplazo proteico de harina de pescado en dietas balanceadas para juveniles de Totoaba macdonaldi (Gilbert, 1890). Latin American Journal of Aquatic Research, 43(3):457-465. http://dx.doi.org/10.3856/vol43-issue3-fulltext-7
Fanali C., Dugo L., Cacciola F., Beccaria M., Grasso S., Dacha M., Dugo P., Mondello L. (2011). Chemical characterization of sacha inchi Plukenetia volubilis L. oil. Journal of Agricultural and Food Chemistry, 59:13043-13049. https://doi.org/10.1021/jf203184y
Fernandez C., Boudouresque C.F. (2000). Nutrition of the sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) fed different artificial food. Marine Ecology Progress Series, 204:131-141. https://doi.org/10.3354/meps204131
Frantzis A., Grémare A. (1992). Ingestion, absorption, growth rate of Paracentrotus lividus (Echinodermata: Echinoidea) fed different macrophytes. Marine Ecology Progress Series, 95(1-2):169-183. https://doi.org/10.3354/meps095169
Gates K.W. (2010). Marine products for healthcare: functional and bioactive nutraceutical compounds from the ocean. Journal of Aquatic Food Product Technology, 19(1):48-54. https://doi.org/10.1080/10498850903517528
Gianguzza P. (2020). Arbacia. Chapter 24 In: Lawrence J.M. (Ed). Sea Urchins: Biology and Ecology (Fourth Edition). Elsevier Science. Amsterdam, Netherlands. pp: 419-429. https://doi.org/10.1016/B978-0-12-819570-3.00024-X
Gianguzza P., Bonaviri C. (2013). Arbacia. Chapter 19 In: Lawrence J.M. (Ed). Sea Urchins: Biology and Ecology (Third Edition). Elsevier Science. Amsterdam, Netherlands. pp: 275-283. https://doi.org/10.1016/B978-0-12-396491-5.00019-8
Gómez-Pinchetti J.L., García-Reina G. (1993). Enzymes from marine phycophages that degrade cell walls of seaweeds. Marine Biology, 116:553-558. https://doi.org/10.1007/BF00355473
Guidetti P., Terlizzi A., Boero F. (2004). Effects of the edible sea urchin, Paracentrotus lividus, fishery along the Apulian rocky coast (SE Italy, Mediterranean Sea). Fisheries Research, 66(2-3):287-297. https://doi.org/10.1016/S0165-7836(03)00206-6
Gutiérrez-Espinosa M.C., Yossa-Perdomo M.I., Vásquez-Torres W. (2011). Digestibilidad aparente de materia seca, proteína y energía de harina de vísceras de pollo, quinua y harina de pescado en tilapia nilótica, Oreochromis niloticus. Orinoquia, 15(2):169-179. https://doi.org/10.22579/20112629.16
Hagen N.T., Siikavuopio S.I. (2010). Recent advances in sea-urchin aquaculture in Norway. Bulletin of the Aquaculture Association of Canada, 108(1):18-22.
Hardy R.W. (2010). Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research, 41:770-776. https://doi.org/10.1111/j.1365-2109.2009.02349.x
Hill S.K., Lawrence J.M. (2006). Interactive effects of temperature and nutritional condition on the energy budgets of the sea urchins Arbacia punctulata and Lytechinus variegatus (Echinodermata: Echinoidea). Journal of the Marine Biological Association of the United Kingdom, 86(4):783-790. https://doi.org/10.1017/S0025315406013701
Hyman L. (1955). The invertebrates: Echinodermata (Volume IV). McGraw-Hill Book Co. Inc. New York, United States of America.
Jangoux M., Lawrence J.M. (1982). Echinoderm Nutrition (First Edition). CRC Press. London, England. https://doi.org/10.1201/9781003078920
Kamarudin M.S., Ramezani-Fard E., Saad C.R., Harmin S.A. (2012). Effects of dietary fish oil replacement by various vegetable oils on growth performance, body composition and fatty acid profile of juvenile Malaysian mahseer, Tor tambroides. Aquaculture Nutrition, 18:532-543. https://doi.org/10.1111/j.1365-2095.2011.00907.x
Klinger T.S. (1984). Activities and kinetics of digestive α- and β-glucosidase and β-galactosidase of five species of echinoids (Echinodermata). Comparative Biochemistry and Physiology Part A: Physiology, 78(3):597-600. https://doi.org/10.1016/0300-9629(84)90603-0
Klinger T.S., Lawrence J.M., Lawrence A.L. (1998). Digestion, absorption, and assimilation of prepared feeds in echinoids. In: Mooi R., Teleford M. (Eds). Echinoderms: San Francisco. CRC Press. Florida, United States of America. pp: 713-721.
Lawrence A.L., Lawrence J.M. (2004). Importance, status and future research needs for formulated feed for sea urchin aquaculture. In: Lawrence J.M., Guzmán O. (Eds). Sea Urchins Fisheries and Ecology: Proceedings of the international conference on sea urchin fisheries and aquaculture. Destech Publications, Inc. Pennsylvania, United States of America. pp: 275-283.
Lawrence J.M. (2007). Edible Sea Urchins: Use and life-history strategies. Chapter 1 In: Lawrence J.M. (Ed). Edible Sea Urchins: Biology and Ecology (Second Edition). Elsevier Science. Amsterdam, Netherlands. pp: 1-9. https://doi.org/10.1016/S0167-9309(07)80065-2
Lawrence J.M. (2013). Sea Urchin Life History Strategies. Chapter 2 In: Lawrence J.M. (Ed). Sea Urchins: Biology and Ecology (Third Edition). Elsevier Science. Amsterdam, Netherlands. pp: 15-23. https://doi.org/10.1016/B978-0-12-396491-5.00002-2
Lawrence J.M., Lawrence A.L., Watts S.A. (2007). Feeding, digestion, and digestibility. Chapter 7 In: Lawrence J.M. (Ed). Edible Sea Urchins: Biology and Ecology (Second Edition). Elsevier Science. Amsterdam, Netherlands. pp: 135-158. https://doi.org/10.1016/S0167-9309(07)80071-8
Lawrence J.M., Plank L.R., Lawrence A.L. (2003). The effect of feeding frequency on consumption of food, absorption efficiency, and gonad production in the sea urchin Lytechinus variegatus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 134(1):69-75. https://doi.org/10.1016/s1095-6433(02)00222-2
Lessios H.A., Lockhart S., Collin R., Sotil G., Sánchez-Jerez P., Zigler K.S., Perez A.F., Garrido M.J., Geyer L.B., Bernardi G., Vacquier V.D., Haroun R., Kessing B.D. (2012). Phylogeography and bindin evolution in Arbacia, a sea urchin genus with an unusual distribution. Molecular Ecology, 21(1):130-144. https://doi.org/10.1111/j.1365-294X.2011.05303.x
Li X.Q., Xu H.B., Sun W.T., Xu X.Y., Xu Z., Leng X.J. (2018). Grass carp fed a fishmeal-free extruded diet showed higher weight gain and nutrient utilization than those fed a pelleted diet at various feeding rates. Aquaculture, 493:283-288. https://doi.org/10.1016/j.aquaculture.2018.04.058
Martínez-Pita I., García F.J., Pita M.L. (2010). The effect of seasonality on gonad fatty acids of sea urchins Paracentrotus lividus and Arbacia lixula (Echinodermata: Echinoidea). Journal of Shellfish Research, 29(2):517-525. https://doi.org/10.2983/035.029.0231
McBride S.C. (2005). Sea urchin aquaculture. American Fisheries Society Symposium, 46:179-208.
Meidel S.K., Scheibling R.E. (1999). Effects of food type and ration on reproductive maturation and growth of the sea urchin Strongylocentrotus droebachiensis. Marine Biology, 134:155-166. https://doi.org/10.1007/s002270050534
Mendes A., Araújo J., Soares F., Bandarra N., Pousão-Ferreira P. (2019). Production of purple sea urchin Paracentrotus lividus in Portugal. World Aquaculture, 50(1):46-50.
Micael J., Alves M., Costa A., Jones M. (2009). Exploitation and conservation of echinoderms. In: Gibson R.N., Atkinson R.J.A., Gordon J.D.M. (Eds). Oceanography and Marine Biology: Annual Review (Volume 47). CRC Press. Florida, United States of America. pp: 191-208.
Miranda-Gelvez R.A, Guerrero-Alvarado C.E. (2015). Efecto de la torta de Sacha Inchi (Plukenetia volubilis) sobre el desempeño productivo de juveniles de tilapia roja (Oreochromis sp.). Respuestas, 20(2):82-92.
Muñoz-Entrena S. (2019). Growth of juveniles of two species of sea urchins under three different diets. Bachelor thesis, Universidad de Las Palmas de Gran Canarias, Spain.
Nielsen S.S. (2017). Food Analysis (Fifth Edition). Springer. Cham, Switzerland. https://doi.org/10.1007/978-3-319-45776-5
Olave S., Bustos E., Lawrence J.M., Cárcamo P. (2001). The effect of size and diet on gonad production by the Chilean sea urchin Loxechinus albus. Journal of the World Aquaculture Society, 32(2):210-214. https://doi.org/10.1111/j.1749-7345.2001.tb01097.x
Ortiz-Chura A., Pari-Puma R.M, Rodríguez-Huanca F.H., Cerón-Cucchi M.E., Araníbar-Araníbar M.J. (2018). Apparent digestibility of dry matter, organic matter, protein, and energy of native Peruvian feedstuffs in juvenile rainbow trout (Oncorhynchus mykiss). Fisheries and Aquatic Sciences, 21:1-7. https://doi.org/10.1186/s41240-018-0111-2
Pais A., Chessa L.A., Serra S., Ruiu A., Meloni G., Donno Y. (2007). The impact of commercial and recreational harvesting for Paracentrotus lividus on shallow rocky reef sea urchin communities in North-western Sardinia, Italy. Estuarine, Coastal and Shelf Science, 73(3-4):589-597. https://doi.org/10.1016/j.ecss.2007.02.011
Palma-Chávez J.J., Sonnenholzner-Varas J.I., Zapata-Vivenes E. (2021). Equinocromo A en el fluido celómico de Arbacia stellata (Echinodermata: echinoidea) con interés para la acuicultura. AquaTechnica, 3(2):61-67. https://doi.org/10.5281/zenodo.5277603
Pangestuti R., Indriana L.F., Putra Y., Pratama I.S., Rahmadi P., Kim S-K. (2022). Nutraceuticals-based Echinodermata. Chapter 4 In: Grabacki ST., Pathak Y.V., Joshi N.H. (Eds). Marine-Based Bioactive Compounds: Applications in Nutraceuticals (First Edition). CRC Press. Boca Raton, United States of America. pp: 61-93. https://doi.org/10.1201/9781003128175
Penchaszadeh P.E., Lawrence J.M. (1999). Arbacia dufresnei (Echinodermata: Echinoidea): a carnivore in Argentinian waters. In: Candia M.D., Carnevali, Bonasoro F. (Eds). Echinoderm Research. A.A. Balkema. Rotterdam, Netherlands. pp: 525-530.
Prato E., Chiantore M., Kelly M.S., Hughes A.D., James P., Ferranti M.P., Biandolino F., Parlapiano I., Sicuro B., Fanelli G. (2018). Effect of formulated diets on the proximate composition and fatty acid profiles of sea urchin Paracentrotus lividus gonad. Aquaculture International, 26:185-202. https://doi.org/10.1007/s10499-017-0203-5
Rani S. (2014). Fish meal replacement by soybean meals in extruded feeds for Carassius auratus, common goldfish. Journal of International Academic Research for Multidisciplinary, 2(6):350-359.
Rubilar T., Barbieri E.S., Gazquez A., Avaro M. (2021). Sea urchin pigments: Echinochrome A and its potential implication in the cytokine storm syndrome. Marine Drugs, 19(5):1-11. https://doi.org/10.3390/md19050267
Rubilar T., Crespi-Abril A. (2017). Does echinoderm research deserve an ethical consideration? Revista de Biología Tropical, 65(S1):11-22.
Rubilar T., Epherra L., Deias-Spreng J., Díaz de Vivar M.E., Avaro M., Lawrence A.L., Lawrence J.M. (2016). Ingestion, absorption and assimilation efficiencies, and production in the sea urchin Arbacia dufresnii fed a formulated feed. Journal of Shellfish Research, 35(4):1083-1093. https://doi.org/10.2983/035.035.0431
Ruiz C., Díaz C., Anaya J., Rojas R. (2013). Análisis proximal, antinutrientes, perfil de ácidos grasos y de aminoácidos de semillas y tortas de 2 especies de Sacha Inchi (Plukenetia volubilis y Plukenetia huayllabambana). Revista de la Sociedad Química del Perú, 79(1):29-36.
Salas-Durán C., Chacón-Villalobos A., Zamora-Sánchez L. (2015). La harina de cefalotórax de camarón en raciones para gallinas ponedoras. Agronomía Mesoamericana, 26(2):333-343. https://doi.org/10.15517/am.v26i2.19327
Sartori D., Gaion A. (2015). Can sea urchins benefit from an artificial diet? Physiological and histological assessment for echinoculture feasibility evaluation. Aquaculture Nutrition, 22(6):1214-1221. https://doi.org/10.1111/anu.12326
Senphan T., Benjakul S. (2015). Impact of enzymatic method using crude protease from Pacific white shrimp hepatopancreas on the extraction efficiency and compositions of lipids. Food Chemistry, 166:498-506. https://doi.org/10.1016/j.foodchem.2014.06.054
Shearer K.D. (1995). The use of factorial modeling to determine the dietary requirements for essential elements in fishes. Aquaculture, 133(1):57-72. https://doi.org/10.1016/0044-8486(94)00405-D
Shikov A.N., Pozharitskaya O.N., Krishtopina A.S., Makarov V.G. (2018). Naphthoquinone pigments from sea urchins: chemistry and pharmacology. Phytochemistry Reviews, 17:509-534. https://doi.org/10.1007/s11101-018-9547-3
Silva J., Larrain A., Bay-Schmith E., Roa R. (2004). Feeding-regime experiments to enhance gamete production in the carnivorous sea urchin Arbacia spatuligera. Aquaculture, 231(1-4):279-291. https://doi.org/10.1016/j.aquaculture.2003.09.053
Solís-Marín F.A., Honey-Escandón M.B.I., Herrero-Perezrul M.D., Benítez-Villalobos F., Díaz-Martínez J.P., Buitrón-Sánchez B.E., Palleiro-Nayar J.S., Durán-González A. (2013). The echinoderms of Mexico: biodiversity, distribution, and current state of knowledge. In: Alvarado J.J., Solís-Marín F.A. (Eds). Echinoderm Research and Diversity in Latin America. Springer-Verlag Berlin Heidelberg. Berlin, Germany. pp: 11-65. https://doi.org/10.1007/978-3-642-20051-9_2
Sonnenholzner J.I. (2011). Crecimiento y validación de la edad del erizo morado Strongylocentrotus purpuratus (Stimpson 1857) en condiciones naturales y de laboratorio. Doctoral thesis, Universidad Autónoma de Baja California, Ensenada, Mexico.
Sonnenholzner-Varas J.I. (2021). ¿Hacia dónde va la acuicultura de equinodermos en América Latina? Potencial, retos y oportunidades. Revista de Biología Tropical, 69(1):514-549. http://dx.doi.org/10.15517/rbt.v69isuppl.1.46393
Sonnenholzner-Varas J.I., Moreira J.A., Panchana-Orrala M.M. (2019). Growth performance and survival of Holothuria theeli (holothurian) fed with feces of Tripneustes depressus (echinoid): A multi-trophic aquaculture approach. Aquaculture, 512:1-12. https://doi.org/10.1016/j.aquaculture.2019.734345
Sonnenholzner-Varas J.I., Touron N., Panchana-Orrala M.M. (2018). Breeding, larval development, and growth of juveniles of the edible sea urchin Tripneustes depressus: A new target species for aquaculture in Ecuador. Aquaculture, 496:134-145. https://doi.org/10.1016/j.aquaculture.2018.07.019
Sudaryono A., Hoxey M.J., Kailis S.G., Evans L.H. (1995). Investigation of alternative protein sources in practical diets for juvenile shrimp, Penaeus monodon. Aquaculture, 134(3-4):313-323. https://doi.org/10.1016/0044-8486(95)00047-6
Sweijd N.A. (1990). The digestive mechanisms of an intertidal grazer, the sea urchin Parechinus angulosus. Master's thesis, Rhodes University, Grahamstown, South Africa.
Trenzado C.E., Hidalgo F., Villanueva D., Furné M., Díaz-Casado M.E., Merino R., Sanz A. (2012). Study of the enzymatic digestive profile in three species of Mediterranean Sea urchins. Aquaculture, 344-349:174-180. https://doi.org/10.1016/j.aquaculture.2012.03.027
Vasileva E.A., Mishchenko N.P., Fedoreyev S.A. (2017). Diversity of Polyhydroxynaphthoquinone pigments in North Pacific Sea urchins. Chemistry & Biodiversity, 14(9):e1700182. https://doi.org/10.1002/cbdv.201700182
Vásquez J.A., Castilla J.C., Santelices B. (1984). Distributional patterns and diets of four species of sea urchins in giant kelp forest (Macrocystis pyrifera) of Puerto-Toro Navarino Island, Chile. Marine Ecology Progress Series, 19:55-63. https://doi.org/10.3354/meps019055
Zambrano-Andrade V.H., Panta-Vélez R.P., Isea-León F. (2021). Crecimiento y supervivencia de juveniles de chame Dormitator latifrons (Richardson 1844) alimentados con dietas a base de sacha inchi (Plukenetia volubilis L. 1753, Plantae: Euphorbiaceae). AquaTechnica, 3(3): 124-132. https://doi.org/10.33936/at.v3i3.4115
Zhang C., Kim S.K. (2010). Research and application of marine microbial enzymes: status and prospects. Marine Drugs, 8(6):1920-1934. https://doi.org/10.3390/md8061920
Zhoug Q.C., Tan B.P., Mai K.S., Liu Y.J. (2004). Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum. Aquaculture, 241(1-4):441-451. https://doi.org/10.1016/j.aquaculture.2004.08.044
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Jonathan Eduardo Pincay Espinoza, Jorge Sonnenholzner Varas, Fernando Isea León, Mathew Cedeño Avellán

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.


