Importance of joint interpretation of the coefficient of variation and determination in agricultural trials: A case study with bean yield

Agriculture & Silviculture

Authors

  • Freddy Carlos Gavilánez Luna Universidad Agraria del Ecuador

DOI:

https://doi.org/10.33936/latecnica.v15i2.7320

Keywords:

analysis of variance, experimental error, experimental unit, sums of squares.

Abstract

Verifying the goodness of an agricultural experiment in analysis of variance (ANOVA) models only through the coefficient of variation (CV) of its variables can lead us to make decisions about imprecise trials (error II) or even take us to the extreme. more complicated to recommend alternatives that in practice do not have significant effects (error I). A statistician that must accompany the CV to assess this goodness and that is not affected by the degrees of freedom of the experimental error as in the latter, is the coefficient of determination (r2). Given this situation, it was proposed to demonstratively detail a practical example to increase the value judgment of a researcher when accepting the results of an experiment, considering for this purpose what is established by the CV and the r2 simultaneously. Performance was analyzed as a variable in an experiment with 24 data, considering a randomized complete block design with six treatments and four repetitions. The assumptions of normality, independence and homoscedasticity of the residuals were checked; the ANOVA was performed and the CV, r2, was calculated, in addition to the repeatability index of the trial. The apparent goodness of the experiment was demonstrated by obtaining a CV of 10.88%, well below the maximum limit given by the literature (30%), although the r2 barely presented a value of 0.47 far from the minimum limit of 0.60; which highlights the importance of looking at CV alongside r2 when examining the robustness of an experimental result.

Downloads

Download data is not yet available.

References

Balzarini, M., Di Rienzo, J., Tablada, M., González, L., Bruno, C., Córdoba, M., Robledo, W. y Casanoves., F. (2011). Estadística y biometría. Argentina: Editorial Brujas.

Bowman, D. T. & Watson, C. E. (1997). Measures of validity in cultivar performance trials. Agronomy Journal, 89(6), 860-866. https://doi.org/10.2134/agronj1997.00021962008900060003x

Carballo, A. y Quiroga, V. (1976). Manual práctico para el análisis de experimentos de campo. Instituto Interamericano de Ciencias Agrícolas (IICA). https://n9.cl/kvk9a

Centro Internacional de mejoramiento de maíz y trigo (CIMMYT). (1988). La formulación de recomendaciones a partir de datos agronómicos: Un manual metodológico de evaluación económica. México: CIMMYT. https://n9.cl/47h35

Chicco, D., Warrens, M. J. & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7:e623. https://doi.org/10.7717/peerj-cs.623

Cochran, W. G. & Cox, G. M. (1992). Experimental designs. Reino Unido: Wiley.

Cumming G. (2014). The new statistics: why and how. Psychol Sci., 25(1), 7-29. doi: 10.1177/0956797613504966.

García, B., Amorin, G., Luciene, K., Suares, P., Bastos, A., Almeida, T., Daieny, A. & Menezes, L. (2021). Classification of the coefficient of variation for experiments with eucalyptus seedlings in greenhouse. Revista Ciência Agronômica, 52(4), e20207587. https://doi.org/10.5935/1806-6690.20210050

García, R. M. (2002). Inferencia estadística y diseño de experimentos. Buenos Aires, Argentina: EUDEBA.

Gordón-Mendoza, R. y Camargo-Buitrago, I. (2015). Selección de estadísticos para la estimación de la precisión experimental en ensayos de maíz. Agronomía Mesoamericana, 26(1), 55-63. http://dx.doi.org/10.15517/am.v26i1.16920

Gutiérrez, H. y De La Vara, R. (2008). Análisis y diseño de experimentos (2da. Ed.). México: McGraw-Hill/Interamericana Editores S.A.

Kuehl, R. O. (2001). Diseño de experimentos: principios estadísticos de diseño y análisis de investigación (2da. Ed.). México: International Thomson Editores S.A.

Mayor-Durán, V., Blair, M. y Muñoz, J. (2012). Metodología para estimar el coeficiente de heterogeneidad del suelo, el número de repeticiones y el tamaño de parcela en investigaciones con frijol (Phaseolus vulgaris L.). Acta Agronómica, 61(1), 32-39. http://www.scielo.org.co/scielo.php?pid=S0120-28122012000100005&script=sci_arttext

Mićić, N. and Bosančić, B. (2012). Variability and variation coefficients in biological and agricultural experimental research. Agroznanje, 13(3), 331-342. https://doi.org/10.7251/AGRSR1203331M

Mishra, P., Hasham, M. M., Manjunatha, G. R., Ray, S., Homa, F. and Pawariya, V. (2023). Role of design of experiment in agriculture trials and its role in decision making. International Journal of Agricultural & Statistical Sciences, 19(1), 389-399. http://dx.doi.org/10.59467/IJASS.2023.19.389

Montgomery, D. C. (2004). Diseño y análisis de experimentos (2da. Ed.). México: Editorial LIMUSA S.A.

Montgomery, D. C., Peck, E. A. y Vining, G. G. (2006). Introducción al análisis de regresión lineal (3era. Ed.). México: Compañía Editorial Continental.

Nardino, M., Machado, J., Torres, V., Costa, F. Dias, F. and Silva, W. (2020). Coefficient of variation: a new approach for the study in maize experiments. Brazilian Journal of Biometrics, 38(2), 185-206. https://doi.org/10.28951/rbb.v38i2.440

RStudio Team. (2023). RStudio: Integrated Development for R [Computer software]. Posit Software, PBC. https://posit.co

Ruiz-Ramírez, J. (2010). Eficiencia relativa y calidad de los experimentos de fertilización en el cultivo de caña de azúcar. Terra Latinoamericana, 28(2), 149-154. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792010000200006

Senar, J. C. (1999). La medición de la repetibilidad y el error de medida. Etologuía, 5(17), 53-64. https://www.researchgate.net/publication/233801237_La_medicion_de_la_repetibilidad_y_el_error_de_medida

Taylor, S. L., Payton, M. E. and Raun, W. R. (2008). Relationship between mean yield, coefficient of variation, mean square error, and plot size in wheat field experiments. Communications in Soil Science and Plant Analysis, 30(9-10), 1439-1447. https://doi.org/10.1080/00103629909370298

Vargas-Rojas, J., Vega-Villalobos, E. y Cerdas-Ramírez, R. (2020). Tamaño y forma de la unidad experimental en ensayos de rendimiento de Brachiaria híbrido CIAT 3608. Pastos y Forrajes, 43(2), 144-149. http://scielo.sld.cu/pdf/pyf/v43n2/2078-8452-pyf-43-02-144.pdf

Vásquez, E. R. y Caballero, A. (2011). Inconsistencia del coeficiente de variación para expresar la variabilidad de un experimento en un modelo de análisis de varianza. Cultivos Tropicales, 32(3), 59-62. https://www.redalyc.org/articulo.oa?id=193222357008

Published

2025-10-25

How to Cite

[1]
Gavilánez Luna, F.C. 2025. Importance of joint interpretation of the coefficient of variation and determination in agricultural trials: A case study with bean yield: Agriculture & Silviculture. La Técnica. Revista de las Agrociencias. ISSN 2477-8982. 15, 2 (Oct. 2025), 97–102. DOI:https://doi.org/10.33936/latecnica.v15i2.7320.