ON FIXED POINT THEORY AND CONTROL FUNCTIONS. STATE OF THE ART.

Authors

DOI:

https://doi.org/10.33936/revbasdelaciencia.v7iESPECIAL.4062

Keywords:

Altering distance function, compatible function, continuous function, decreasing function, fixed point.

Abstract

The fixed-point theory studies the conditions either one or two mappings and the space of definition them, such that the existence and uniqueness of fixed point can be guaranteed. During the first half of the 20th century, Stefan Banach proved a fixed-point theorem for a contractive function defined on a complete metric space. This theorem was developed in several

ways by many authors obtaining results that involve two commutative applications, as is the case of theorem introduced by Gerald Jungck. From 1984 appear extensions of Banach’s contraction principle where the contractive inequality depends on a control function called: altering distance function between points. The goal of this paper is to make an updated review of conditions that guarantee the existence and uniqueness for one and two compatible functions, defined on a complete metric space and considering the altering distance functions and replacing the contraction constant by a function. Some examples that show the importance of generalizations of fixed-point theorems both Banach and Jungck, are given. We provide conditions on a pair of mappings that guarantee the existence and uniqueness of common fixed point by using altering distance functions.

Downloads

Download data is not yet available.

References

Banach, S. (1922, 12). Surles operation dans les ensembles ab- stracts etleur application aux equations integrals. Fundamenta Mathematicae, 3(1), 133-181. Descargado de http://eudml.org/doc/ 213289

Cárdenas, A., y Gutierrez, G. (2008). Una nota sobre el teorema de punto fijo de banach en la solucion de sistemas de ecuaciones lineales algebraicas. Scientia Et Technica, XIV(40), 203-205. Descargado de https://revistas.utp.edu.co/index.php/revistaciencia/article/view/3103

Dávila, I. (2006). La teoría del punto fijo para un par de funciones . [Tesis de Pregrado, Universidad de los Andes, Merida,Venezuela].

Garcia, D. (2020). Toeoremas del punto fijo y aplicaciones [ Tesis de grado, Universitat de Barcelona]. Dipòsit Digital de la Universitat de Barcelona. Descargado de http://hdl.handle.net/2445/ 164998

Jungck, G. (1976). Commuting mappings and fixed points. The American Mathematical Monthly, 83(4), 261-263. Descargado de https://doi.org/10.2307/2318216 doi: 10.2307/2318216

Jungck, G. (1986). Compatible mappings and common fixed points. Bull. Austral. Math, 9(4), 771-779. Descargado de https://doi.org/10.1155/S0161171286000935 doi: 10.1155/ S0161171286000935

Khan, M., Swaleh, M., y Sessa, S. (1984). Fixed point theorem by altering distances between the points. Internat. J. Math. and Math. Sci, 30, 1-9. Descargado de https://doi.org/10.1017/ S0004972700001659 doi: 10.1017/S0004972700001659

Klim, D., y Wardowski, D. (2007). Fixed point theorems for set-valued contractions in complete metric spaces. Mathematical Analysis and Aplications, 334 (1), 132-139. Descargado de https:// doi.org/10.1016/j.jmaa.2006.12.012 doi: 10.1016/j.jmaa.2006.12.012

Koierngi, M., Rohen., Y., y Verma, R. (2018). Some common fixed point theorems for two pairs of weak compatible mappings of type (a) in gb-metric space. American Journal of Applied Mathematics and Statistics, 6 (4), 135-140. Descargado de https://www.researchgate.net/ publication/326800117_Some_Common_Fixed_Point_Theorems_for_Two_Pairs_of_Weak _Compatible_Mappings_of_Type_A_in_Gb-metric_Space

Morales, J. R., y Rojas, E. M. (2012a). Some fixed point theorems by altering distance functions. Palestine Journal of Mathematics, 1(2), 111–116. Descargado de https://pjm.ppu.edu/paper/ 24

Morales, J. R., y Rojas, E. M. (2012b). Some generalizations of jungck’s fixed point theorem. Ameri- can Journal of Applied Mathematics and Statistics, 2012, 1-19. Descargado de https://doi.org/ 10.1155/2012/213876 doi: 10.1155/2012/213876

Pata, V. (2019). Fixed point theorems and applications. Cham, Switzerland: Springer, Cham.

Rakotch, E. (1962). A note on contractive mappings. Proc. Amer. Math. Soc, 13, 459-465. Descargado de https://doi.org/10.1090/S0002-9939-1962-0148046-1 doi: 10.1090/S0002-9939-1962 -0148046-1

Rhoades, B., Khan, M., y Khan, M. (1984). Some fixed point theorems for hardy-rogers type map- pings. International Journal of Mathematics and Mathematical Sciences, 7(1), 75-87. Descargado de https://doi.org/10.1155/S0161171284000077 doi: 10.1155/S0161171284000077

Vandana, C. (2017). A brief study of fixed point theorem. International Journal of Applied Sciences, 4, 1-3.

Vujaković, J., Ljajko, E., Radojević, S., y Radenović, S. (2020). On some new jungck–fisher– wardowski type fixed point results. Symmetry, 12(12, 2048-2057. Descargado de https:// doi.org/10.3390/sym12122048 doi: 10.3390/sym12122048

Published

2022-12-27

Issue

Section

Ciencias Matemáticas