MODIFIED PATANKAR RUNGE-KUTTA SCHEME USING CONVEX WEIGHTING OF THE PATANKAR WEIGHT DENOMINATORS
DOI:
https://doi.org/10.33936/revbasdelaciencia.v7iESPECIAL.5084Keywords:
Conservatives, Modified Patankar RungeKutta (MPRK), Patankar Weight Denominators (PWD), Systems of production destruction.Abstract
The following presents an introduction to the modified patankar rungekutta schemes, which are known as numeric schemes that solve systems of production destruction positives and conservatives. It will show the main properties of MPRK schemes, in particular it stands out the second order schemes of two stages known as MPRK22. Further, it would intro- duce a modification of the MPRK22 scheme, and show a new scheme of second order by completing a convex combination of the Patankar Weight Denominators (PWD).
Downloads
References
Burchard, H., Deleersnijder, E., y Meister, A. (2003). A high-order conservative patankar-type dis- cretisation for stiff systems of production–destruction equations. Applied Numerical Mathema- tics, 47(1), 1-30. Descargado de https://www.sciencedirect.com/science/article/pii/ S0168927403001016 doi: https://doi.org/10.1016/S0168-9274(03)00101-6
Horváth, Z. (2005). On the positivity step size threshold of runge–kutta methods. Applied Numeri- cal Mathematics, 53(2), 341-356. Descargado de https://www.sciencedirect.com/science/ article/pii/S016892740400159X (Tenth Seminar on Numerical Solution of Differential and Differntial-Algebraic Euqations (NUMDIFF-10)) doi: https://doi.org/10.1016/j.apnum.2004.08 .026
Huang, J., y Shu, C.-W. (2019). Positivity-preserving time discretizations for production–destruction equations with applications to non-equilibrium flows. Journal of Scientific Computing, 78(3), 1811– 1839.
Kopecz, S., y Meister, A. (2018a). On order conditions for modified patankar–runge–kutta schemes. Applied Numerical Mathematics, 123, 159-179. Descargado de https://www.sciencedirect .com/science/article/pii/S0168927417301861 doi: https://doi.org/10.1016/j.apnum.2017 .09.004
Kopecz, S., y Meister, A. (2018b). Unconditional positive and conservative third order modified patankar runge kutta discretizations of production destruction systems. BIT Num. Math., 58(4), 694–728.
Kopecz, S., y Meister, A. (2019). On the existence of three-stage third-order modified patankar– runge–kutta schemes. Numerical Algorithms, 81(4), 1473–1484.
Shampine, L. (1986). Conservation laws and the numerical solution of odes. Computers Mathematics with Applications, 12(5, Part 2), 1287-1296. Descargado de https://www.sciencedirect.com/ science/article/pii/0898122186902531 doi: https://doi.org/10.1016/0898-1221(86)90253 -1
Shampine, L. (1999). Conservation laws and the numerical solution of odes, ii. Computers & Mathe- matics with Applications, 38(2), 61–72.
Shampine, L., Thompson, S., Kierzenka, J., y Byrne, G. (2005). Non-negative solutions of odes. Applied Mathematics and Computation, 170(1), 556-569. Descargado de https:// www.sciencedirect.com/science/article/pii/S0096300304009683 doi: https://doi.org/ 10.1016/j.amc.2004.12.011
Ávila, A. I., González, G. J., Kopecz, S., y Meister, A. (2021). Extension of modified patankar–runge– kutta schemes to nonautonomous production–destruction systems based on oliver’s approach. Journal of Computational and Applied Mathematics, 389, 113350. Descargado de https:// www.sciencedirect.com/science/article/pii/S0377042720306415 doi: https://doi.org/ 10.1016/j.cam.2020.113350
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Johnny Fabián Villavicencio Delgado, Galo Javier González Hernández

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.