ESQUEMA DEL TIPO MODIFIED PATANKAR RUNGE–KUTTA UTILIZANDO UNA PONDERACIÓN CONVEXA DE LOS PESOS PATANKAR WEIGHT DENOMINATORS

Autores

DOI:

https://doi.org/10.33936/revbasdelaciencia.v7iESPECIAL.5084

Palavras-chave:

Conservativos, Modified Patankar Runge-Kutta (MPRK), Patankar Weight Denominators (PWD), Siste- mas de Producción-Destrucción.

Resumo

Este trabajo presenta una introducción a los esquemas del tipo Modified Patankar Runge-Kutta (MPRK), los esquemas numéricos MPRK resuelven sistemas de Producción Destrucción positivos y conservativos. Se presenta las principales propiedades de los esquemas MPRK y en particular se detalla el esquema de segundo orden de dos etapas denominado MPRK22, para luego introducir una modificación del esquema MPRK22 y presentar un nuevo esquema de segundo orden haciendo una combinación convexa de los pesos Patankar Weight Denominators (PWD). Los resultados son confirmados por experimentos numéricos considerando un sistema de ecuaciones diferenciales no lineal.

Downloads

Não há dados estatísticos.

Referências

Burchard, H., Deleersnijder, E., y Meister, A. (2003). A high-order conservative patankar-type dis- cretisation for stiff systems of production–destruction equations. Applied Numerical Mathema- tics, 47(1), 1-30. Descargado de https://www.sciencedirect.com/science/article/pii/ S0168927403001016 doi: https://doi.org/10.1016/S0168-9274(03)00101-6

Horváth, Z. (2005). On the positivity step size threshold of runge–kutta methods. Applied Numeri- cal Mathematics, 53(2), 341-356. Descargado de https://www.sciencedirect.com/science/ article/pii/S016892740400159X (Tenth Seminar on Numerical Solution of Differential and Differntial-Algebraic Euqations (NUMDIFF-10)) doi: https://doi.org/10.1016/j.apnum.2004.08 .026

Huang, J., y Shu, C.-W. (2019). Positivity-preserving time discretizations for production–destruction equations with applications to non-equilibrium flows. Journal of Scientific Computing, 78(3), 1811– 1839.

Kopecz, S., y Meister, A. (2018a). On order conditions for modified patankar–runge–kutta schemes. Applied Numerical Mathematics, 123, 159-179. Descargado de https://www.sciencedirect .com/science/article/pii/S0168927417301861 doi: https://doi.org/10.1016/j.apnum.2017 .09.004

Kopecz, S., y Meister, A. (2018b). Unconditional positive and conservative third order modified patankar runge kutta discretizations of production destruction systems. BIT Num. Math., 58(4), 694–728.

Kopecz, S., y Meister, A. (2019). On the existence of three-stage third-order modified patankar– runge–kutta schemes. Numerical Algorithms, 81(4), 1473–1484.

Shampine, L. (1986). Conservation laws and the numerical solution of odes. Computers Mathematics with Applications, 12(5, Part 2), 1287-1296. Descargado de https://www.sciencedirect.com/ science/article/pii/0898122186902531 doi: https://doi.org/10.1016/0898-1221(86)90253 -1

Shampine, L. (1999). Conservation laws and the numerical solution of odes, ii. Computers & Mathe- matics with Applications, 38(2), 61–72.

Shampine, L., Thompson, S., Kierzenka, J., y Byrne, G. (2005). Non-negative solutions of odes. Applied Mathematics and Computation, 170(1), 556-569. Descargado de https:// www.sciencedirect.com/science/article/pii/S0096300304009683 doi: https://doi.org/ 10.1016/j.amc.2004.12.011

Ávila, A. I., González, G. J., Kopecz, S., y Meister, A. (2021). Extension of modified patankar–runge– kutta schemes to nonautonomous production–destruction systems based on oliver’s approach. Journal of Computational and Applied Mathematics, 389, 113350. Descargado de https:// www.sciencedirect.com/science/article/pii/S0377042720306415 doi: https://doi.org/ 10.1016/j.cam.2020.113350

Publicado

2022-12-26

Edição

Seção

Ciencias Matemáticas