Spectral methods on the hydrogen atom

Ciencias Matemáticas

Authors

DOI:

https://doi.org/10.33936/revbasdelaciencia.v9i1.6403

Keywords:

Spectral theory,, Computational mathematics, Quantum physics, Lanczos method, Eigenvalue calculations, Sparse matrices, Graph theory analysis

Abstract

This study investigates the computational implementation of spectral theory and its applications in analyzing complex mathematical problems. It explores the use of modern programming languages and scientific libraries for implementing and visualizing complex mathematical concepts, particularly focusing on spectral theory within quantum physics. The research employs computational methods to address the challenges in interpreting spectral properties, utilizing the Lanczos spectral method for eigenvalue calculation in large, sparse matrices. The results illustrate the effectiveness of these computational techniques in visualizing quantum states, demonstrating the potential of advanced programming in understanding and solving intricate problems in quantum physics and spectral graph theory. The study's findings are significant in bridging computational methods with theoretical spectral analysis, offering a new perspective on the application of computational techniques in scientific research.

Downloads

Download data is not yet available.

References

Conway, J. B. (1990). A course in functional analysis. Springer-Verlag.

Dunford, N., y Schwartz, J. T. (1958). Linear operators, part ii: Spectral theory. Wiley Classics

Library.

Griffiths, D. J. (2018). Introduction to quantum mechanics (3a ed.). Cambridge University Press.

Hnsch, T. W., Schawlow, A. L., y Series, G. W. (1979). The spectrum of atomic hydrogen. Scientific

American, 240(3), 94–111. Descargado de http://www.jstor.org/stable/24965154

Iacob, F. (2014). Spectral characterization of hydrogen-like atoms confined by oscillating

systems. Central European Journal of Physics, 12(9), 628–636. doi:

https://doi.org/10.33936/revbasdelaciencia.v8i3.547410.2478/s11534-014-0496-1

Reed, M., y Simon, B. (1980). Methods of modern mathematical physics i: Functional analysis.

Academic Press.

Rudin, W. (1991). Functional analysis. McGraw-Hill Science/Engineering/Math.

Taylor, A. E., y Lay, D. C. (2005). Introduction to functional analysis. John Wiley and Sons.

Trefethen, L. N. (1997). Spectral methods in matlab. SIAM. Descargado de https://epubs.siam

.org/doi/book/10.1137/1.9780898719598

Trefethen, L. N., y Bau, D. I. (1997). Numerical linear algebra. Society for Industrial and Applied

Mathematics.

Vadhan, S. (2023). Cs229r: Spectral graph theory in computer science. https://salil.seas

.harvard.edu/courses/cs229r.

Woywod, C., Roy, S., Maiti, K. S., y Ruud, K. (2018). An efficient pseudo-spectral method for

the description of atomic electronic wave functions - application to the hydrogen atom in a

uniform magnetic field. Chemical Physics, 515, 299–314. Descargado de www.elsevier

.com/locate/chemphys

Published

2024-04-24

Issue

Section

Artículos