El Numerical approximation to the Dirichlet problem for the Poisson equation in half lens domain

Authors

DOI:

https://doi.org/10.33936/revbasdelaciencia.v10i2.7544

Keywords:

Dirichlet boundary value problem, half lens domain, Poisson’s equation, numerical approximation.

Abstract

This work presents an approximate solution to the Dirichlet problem for the two-dimensional Poisson equation in a half lens domain. Based on the Green’s function specific to this domain, a particular solution was derived through the integral representation of the problem. Subsequently, a numerical approach was implemented in MATLAB to evaluate this integral representation. The numerical results, presented in tables and plots, demonstrate the method’s performance using metrics such as execution time. This solution represents a first step toward future numerical implementations using fast algorithms, including the Fast Fourier Transform.

Downloads

Download data is not yet available.

References

Begehr, H. & Vaitekhovich, T. (2014). Schwarz problem in lens and lune. Complex Variables and Elliptic Equations, 59(1), 76-84.

Berger, J. M. & Lasher, G. J. (1958). The use of discrete Green’s functions in the numerical solution of Poisson’s equation. Illinois Journal of Mathematics, 2(4A).

Cedeño, R. & Vanegas, C. (2022). Función de Green vía mapeo conforme para el semiplano superior agrietado. Matematica-Revista tecnológica ESPOL, 20.

Cogollos, S., Taroncher, M. & Boria, V. E. (2009). Efficient and accurate computation of Green’s function for the Poisson equation in rectangular waveguides. Radio Science, 44(3).

Harwood, A. R. G. & Dupère, I. D. J. (2012). Numerical Evaluation of the Compact Green’s Function for the Solution of Acoustic Flows. American Society of Mechanical Engineers.

Mandelbaum, R. (2018). Weak Lensing for Precision Cosmology. Annual Review of Astronomy and Astrophysics, 56(1), 393-433. Memarian, M. & Eleftheriades, G. V. (2013). Light concentration using hetero-junctions of anisotropic low permittivity metamaterials.

Light: Science and Applications, 2(11), e114-e114.

Shampine, L. (2008a). Matlab program for quadrature in 2D. Applied Mathematics and Computation, 202(1), 266-274.

Shampine, L. (2008b). Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics, 211(2), 131-140.

Shior, M., Agbata, B., Obeng-Denteh, W., Kwabi, P., Ezugorie, I., Marcos, S., Asante-Mensa, F. & Abah, E. (2024). Numerical solution of partial differential equations using MATLAB: Applications to one-dimensional heat and wave equations. Scientia Africana, 23(4), 243-254.

Taghizadeh, N. & Mohammadi, V. S. (2017). Dirichlet and Neumann problems for Poisson equation in half lens. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 52(2), 61-69.

Vaitsiakhovich, T. (2008). Boundary value problems for complex partial differential equations in a ring domain (Tesis doctoral). Velez Cantos, C. & Vanegas Espinoza, C. (2022). Función de Green en una franja horizontal infinita de amplitud pi con frontera

mixta Dirichlet-Neumann usando el método parqueting-reflections. Matemática ESPOL - FCNM Journal, 20. Vergara Ibarra, J. & Vanegas Espinoza, C. (2022). El Kernel de Poisson para un dominio doblemente conexo. Matemática

ESPOL - FCNM Journal, 20.

Published

2025-08-20

Issue

Section

Ciencias Matemáticas