USO DE DERIVADOS DE SAMARIO COMO INICIADORES DE LA COPOLIMERIZACIÓN DE Ε-CAPROLACTONA CON L-LACTIDA Y CON CARBONATOS CÍCLICOS.

Copolimerización de caprolactona con L-lactida y con carbonatos cíclicos

Autores/as

DOI:

https://doi.org/10.33936/revbasdelaciencia.v7i3.5312

Palabras clave:

Copolimerización, caprolactona, L-lactida, carbonatos cíclicos, acetato de samario (III)

Resumen

En este trabajo, se estudió la actividad catalítica del acetato de samario (III) (SmAc3) como iniciador en la copolimerización de ε-caprolactona (CL) con la L-lactida (L-LA) y del o-fenantrolina-tris(glicina)-κ3COO-samario (III) (A3) como iniciador en la copolimerización de CL con los carbonatos cíclicos, trimetilén carbonato (TMC) y el 2,2-dimetil-1,3-trimetilén carbonato (DMTC). Los productos obtenidos fueron caracterizados mediante espectroscopia de resonancia magnética nuclear, cromatografía de exclusión por tamaño y análisis termogravimétrico. Los resultados indicaron que el SmAc3 indujo la copolimerización de CL con la L-LA, obteniéndose materiales poliméricos con estructura de copolímeros al azar cuyas distribuciones de masas molares se hacían mas anchas en la medida que la proporción de L-LA en la cadena polimérica aumentaba. En el caso de la copolimerización de la CL con los carbonatos cíclicos usando A3 como iniciador, los resultados indicaron que la actividad catalítica depende fuertemente del carbonato cíclico usado como comonómero, es decir que la copolimerización esta influenciada por el efecto estérico.  

Descargas

La descarga de datos todavía no está disponible.

Citas

Arbaoui, A., & Redshaw, C. 2010. Metal catalysts for ε-caprolactone polymerization. Polym. Chem., 1, 801-826. Doi: 0.1039/B9PY00334G.

Bero, M., Adamus, G., Kasperczyk, J., & Janeczek, H. (1993). Synthesis of block copolymers of ε-caprolactone and lactide in the presence of lithium t-butoxide. Polym. Bull., 31, 9-14. Doi: 10.1007/BF00298757

Cai, J., Zhu, K., & Yang, S. (1998). Surface biodegradable copolymers-poly(d,l-lactide-co-1-methyl-1,3-trimethylene carbonate) and poly(d,l-lactide-co-2,2-dimethyl-1,3-trimethylene carbonate): preparation, characterization and biodegradation characteristics in vivo. Polymer, 39, 4409-4415. Doi: 10.1016/S0032-3861(97)10346-9

Cardozo, E., Contreras, R., Bellandi, F., Lopez-Rivera, A., Avendaño, J., Araque, C., & Vielma, J. (2015). Synthesis and characerization of six novel samarium(III) complexes with L-aspartic acid, L-glutamic acid, glycine and o-phenanthroline, bipiridile as ligands. Revista Politécnica, 36, 96-100.

Chen, Ch., Fei, B., Peng, S., Wu, H., Zhuang, Y., Chen, X., Dong, L., & Feng, Z. (2002). Synthesis and characterization of poly(b-hydroxybutyrate) and poly(e-caprolactone) copolyester by transesterification. J. Polym. Sci. Pol. Phys., 40,1893–1903. Doi:10.1002/polb.10242

Chu, B., Zhang, L., Qu, Y., Chen, X., Peng, J., Huang, Y., & Qian, Z. (2016). Synthesis, characterization and drug loading property of Monomethoxy-Poly(ethylene glycol)-Poly(ε-caprolactone)-Poly(D,L-lactide) (MPEG-PCLA) copolymers. Sci. Rep. 6, 34069. Doi: 10.1038/srep34069.

Contreras, J., & Dávila, D. (2006). Ring-opening copolymerization of L-lactide with ε-caprolactone initiated by diphenylzinc. Polym. Int., 55, 1049-1056. Doi: 10.1002/pi.

Contreras, J.M., Medina, D., López-Carrasquero, F., & Contreras, R. (2013). Ring-opening polymerization of ε-caprolactone initiated by samarium acetate. J. Polym. Res. 20, 244. Doi: 10.1007/s10965-013-0244-z

Contreras, J., Pestana, J., Lopez-Carrasquero, F & Torres, C. (2014). Synthesis of ε-caprolactone-b-L-lactide blockcopolymers by mean sequential polymerization, using diphenylzinc as initiator. Polym. Bull., 71, 1661–1674. Doi: 10.1007/s00289-014-1147-9

Contreras, J., Medina, D., Lopez-Carrasquero, F., & Contreras, R. (2019). Ring-Opening Polymerization of L-Lactide Initiated by Samarium(III) Acetate. Curr. Appl. Polym. Sci., 02, 3–1. Doi:10.2174/24522716666181114094536

Contreras-Ramírez, J., & Monsalve, M. (2019). Use of samarium (III) acetate as initiator in ring-opening polymerization of trimethylene carbonate. J. Macromol. Sci., A, 56, 1114-1120, Doi: 10.1080/10601325.2019.1658527.

Contreras-Ramírez, J., & Monsalve, M. (2020). Synthesis and characterization of poly(1-methyltrimethylene carbonate) (PMTMC) by mean ring-opening polymerization. Revista bases de la ciencia, 5, 21-36. Doi: 10.33936/rev_bas_de_la_ciencia.v5i3.1863.

Contreras-Ramírez, J., & Monsalve, M. (2021). Ring-Opening Polymerization of 2,2-Dimethyltrimethylene Carbonate Using Samarium Acetate (III) as an Initiator. Polym. Sci. Ser B+, 63, 94–102. Doi: 10.1134/S1560090421020044.

Contreras-Ramírez, J., Medina, D., & Monsalve, M. 2021. Poliésteres como biomateriales. Una revisión. Revista bases de la ciencia, 6, 113-136. Doi: 10.33936/rev_bas_de_la_ciencia.v6i2.3156

Contreras-Ramírez, J., & Monsalve, M. (2022). Synthesis and characterization of poly(trimetylene carbonate-co-ε-caprolactone) prepared by ring-opening polymerization using samarium(III) acetate as initiator. Int. J. Polym. Anal. Charact., 27, 16-31, Doi: 10.1080/1023666X.2021.1992580.

Cota, I. (2017). Developments in the use of rare earth metal complexes as efficient catalysts for ring-opening polymerization of cyclic esters used in biomedical applications. Phys. Sci. Rev. 2, 20160129. Doi:10.1515/psr-2016-0129

Dash, T., & Konkimalla, B. (2012). Polymeric Modification and Its Implication in Drug Delivery: Poly-ε-caprolactone (PCL) as a Model Polymer. Mol. Pharm., 9, 2365-2379. Doi: 10.1021/mp3001952

Dobrzynski, P. (2002). Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. III. Synthesis and chain-microstructure analysis of terpolymer obtained from L-lactide, glycolide, and ϵ-caprolactone initiated by zirconium(IV) acetylacetonate. J. Polym. Sci. Pol. Chem., 40, 3129-3143. Doi: 10.1002/pola.10401

Edlund, U., Albertsson, A., Singh, S., Fogelberg, I., & Lundgren, B. (2000). Sterilization, storage stability and in vivo biocompatibility of poly(trimethylene carbonate)/poly(adipic anhydride) blends. Biomaterials, 21, 945-955. DOI: 10.1016/s0142-9612(99)00268-9

Hofman, A., S1omkowski, S., & Penczek, S. (1984). Structure of active centers and mechanism of the anionic polymerization of lactones. Makromol. Chem., 185, 91-101. Doi: 10.1002/macp.1984.021850110.

Hofman, A., Szymanski, R., S1omkowski, S., & Penczek, S. (1984). Structure of active species in the cationic polymerization of β-propiolactone and ε-caprolactone. Makromol. Chem., 185, 655-667. Doi: 10.1002/macp.1984.021850405.

Huang, M., Chou, A., Lien, S., Chen, H., Huang, C., Chen, W., Chong, P., Liu, S., & Leng, C. (2009). Formulation and immunological evaluation of novel vaccine delivery systems based on bioresorbable poly(ethylene glycol)-block-poly(lactide-co-ε-caprolactone). J. Biomed. Mater. Res. B., 90, 832-841. Doi:10.1002/jbm.b.31352

Jérôme, C., & Lecomte, P. (2008). Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv. Drug Del. Rev., 60, 1056-1076. Doi: 10.1016/j.addr.2008.02.008

Kamaly, N., Yameen, B., Wu, J., & Farokhzad, C. (2016). Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 116, 2602–2663. Doi: 10.1021/acs.chemrev.5b00346.

Kasperczyk, J., & Bero, M. (1991). Coordination polymerization of lactides, 2. Microstructure determination of poly[(L,L-lactide)-co-(ε-caprolactone)] with 13C nuclear magnetic resonance spectroscopy. Makromol. Chem., 192, 1777-787. Doi: 10.1002/macp.1991.021920812

Khan, F., Tanaka, M., Ahmad, S. Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. (2015). J. Mater. Chem. B., 3, 8224–8249. Doi: 10.1039/C5TB01370D

Kricheldorf, H., & Dunsing, R. (1986). Polylactones, 8. Mechanism of the cationic polymerization of L,L-dilactide. Makromol. Chem., 187, 1611-1625. Doi: 10.1002/macp.1986.021870706

Ling, J., Zhu, W., & Shen, Z. 2004. Controlling ring-opening copolymerization of ε-caprolactone with trimethylene carbonate by scandium tris(2,6-di-tert-butyl-4-methylphenolate). Macromolecules, 37:758-763. Doi: 10.1021/ma035352f

Lu, X., Sun, Z., Cai, W., Gao, Z. (2008). Study on the shape memory effects of poly(L-lactide-co-ε-caprolactone) biodegradable polymers. J. Mater. Sci.: Mater. Med. 19, 395-399. Doi: 10.1007/s10856-006-0100-3

Madhavan, K., Nair, N., & John, R. (2010). An overview of the recent developments in polylactide (PLA) research, Bioresource Technology, 101, 8493-8501. DOI:10.1016/j.biortech.2010.05.092

Medina, D., Contreras, J., López-Carrasquero, F., Cardozo, E., & Contreras, R. (2017). Use of samarium(III)–amino acid complexes as initiators of ring-opening polymerization of cyclic esters. Polym. Bull., 75(3), 1253–1263. Doi:10.1007/s00289-017-2089-9

Monsalve, M., Contreras, J., & López-Carrasquero, F. (2009). Suplemento de la Revista Latinoamericana de Metalurgia y Materiales, S2 (1),137-138.

Monsalve, M., Contreras, J. (2014). Carbonatos orgánicos cíclicos como monómeros: síntesis y caracterización. Revista Científica UNET, 26:67-79.

Monsalve, M., Contreras, J., Cardozo, E., Contreras; R. (2015). Evaluación de la actividad de complejos de samario (III) con ácido L-aspártico, ácido L-glutámico, glicina y o-fenantrolina, como iniciadores en la polimerización de carbonatos cíclicos. Avances en Química, 10, 129-137.

Orchel, A., Jelonek, K., Kasperczyk, J., Dobrzynski, P., Marcinkowski, A., Pamula, I., Orchel, J., Bielecki, I., & Kulczycka, A. (2013). The Influence of Chain Microstructure of Biodegradable Copolyesters Obtained with Low-Toxic Zirconium Initiator to In Vitro Biocompatibility. BioMed Research International, Article ID 176946,1-12. DOI: 10.1155/2013/176946.

Pêgo, A., Grijpma, D., & Feijen, J. (2003). Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks. Polymer, 14:6495-6504. Doi: 0.1016/S0032-3861(03)00668-2.

Pêgo, A.; Zhong, Z. Y.; Dijkstra, P. J.; Grijpma, D. W.; Feijen, J. (2003). Influence of Catalyst and Polymerization Conditions on the Properties of 1,3-Trimethylene Carbonate and ε-Caprolactone Copolymers. Macromol. Chem. Phys., 204, 747-754. Doi: 10.1002/macp.200390043

Puthumana, M., Gopala, P., & Kumar, S. (2020). Chemical modifications of PLA through copolymerization. Int. J. Polym. Anal. Charact., 25, 634–648. DOI: 10.1080/1023666X.2020.1830650

Rokicki, G. (2000). Aliphatic cyclic carbonates and spiroorthocarbonates as monomers. Prog. Polym. Sci., 25, 259-342. Doi:10.1016/S0079-6700(00)00006-X

Rosa, R., Ferreira, F., & Lona, L. (2021). Modeling of Ring Opening Polymerization: A short review with insights on how to develop the method of moments. Chem. Eng. Sci., 246, 116934. DOI: 10.1016/j.ces.2021.116934.

Schappacher, M., Fabre, T., Mingotaud, A. F., & Soum, A. (2001). Study of a (trimethylenecarbonate-co-ε-caprolactone) polymer—Part 1: preparation of a new nerve guide through controlled random copolymerization using rare earth catalysts. Biomaterials, 22, 2849-2855. Doi: 10.1016/S0142-9612(01)00029-1

Shen, Z., Zhu, G., & Ling, J. (2002). Homo- and Copolymerization of ε-Caprolactone and 2,2-Dimethyltrimethylene Carbonate by Rare Earth Initiators. Chinese J. Chem., 20, 1362-1374. Doi: 10.1002/cjoc.20020201136

Stridsberg, K., Ryner, M., & Albertsson, A. (2002). Controlled Ring-Opening Polymerization: Polymers with designed Macromolecular Architecture. Adv. Polym. Sci., 157, 41-65. Doi:10.1007/3-540-45734-8_2

Van de Velde, K., & Kiekens, P. (2002). Material properties. Biopolymers: overview of several properties and consequences on their applications. Polym. Test, 21, 433–442. doi:10.1016/S0142-9418(01)00107-6.

Woodruff, A, & Hutmacher, D. (2010). The return of a forgotten polymer- Polycaprolactone in the 21st century. Prog. Polym. Sci., 35,1217–1256. Doi:10.1016/j.progpolymsci.2010.04.002

Zhu, K., Hendren, R., Jensen, K., & Pitt, C. (1991). Synthesis, Properties, and Biodegradation of Poly( 1,3-trimethylene carbonate), Macromolecules, 24, 1736-1740; doi:10.1021/ma00008a008.

Publicado

2023-01-01

Número

Sección

Ciencias Químicas