USO DE DERIVADOS DE SAMARIO COMO INICIADORES DE LA COPOLIMERIZACIÓN DE Ε-CAPROLACTONA CON L-LACTIDA Y CON CARBONATOS CÍCLICOS.

Copolimerización de caprolactona con L-lactida y con carbonatos cíclicos

Autores

DOI:

https://doi.org/10.33936/revbasdelaciencia.v7i3.5312

Palavras-chave:

Copolimerización, caprolactona, L-lactida, carbonatos cíclicos, acetato de samario (III)

Resumo

Neste trabalho foi estudada a atividade catalítica do acetato de samário (III) (SmAc3) como iniciador na copolimerização de ε-caprolactona (CL) com L-láctido (L-LA) e o-fenantrolina-tris(glicina). )-κ3COO-samário (III) (A3) como iniciador na copolimerização de CL com os carbonatos cíclicos, carbonato de trimetileno (TMC) e carbonato de 2,2-dimetil-1,3-trimetileno (DMTC). Os produtos obtidos foram caracterizados por espectroscopia de ressonância magnética nuclear, cromatografia de exclusão de tamanho e análise termogravimétrica. Os resultados indicaram que SmAc3 induziu a copolimerização de CL com L-LA, obtendo materiais poliméricos com uma estrutura de copolímero aleatória cujas distribuições de massa molar tornaram-se mais amplas à medida que aumentava a proporção de L-LA na cadeia polimérica. No caso da copolimerização de CL com carbonatos cíclicos usando A3 como iniciador, os resultados indicaram que a atividade catalítica depende fortemente do carbonato cíclico usado como comonômero, ou seja, a copolimerização é influenciada pelo efeito estérico.

Downloads

Não há dados estatísticos.

Referências

Arbaoui, A., & Redshaw, C. 2010. Metal catalysts for ε-caprolactone polymerization. Polym. Chem., 1, 801-826. Doi: 0.1039/B9PY00334G.

Bero, M., Adamus, G., Kasperczyk, J., & Janeczek, H. (1993). Synthesis of block copolymers of ε-caprolactone and lactide in the presence of lithium t-butoxide. Polym. Bull., 31, 9-14. Doi: 10.1007/BF00298757

Cai, J., Zhu, K., & Yang, S. (1998). Surface biodegradable copolymers-poly(d,l-lactide-co-1-methyl-1,3-trimethylene carbonate) and poly(d,l-lactide-co-2,2-dimethyl-1,3-trimethylene carbonate): preparation, characterization and biodegradation characteristics in vivo. Polymer, 39, 4409-4415. Doi: 10.1016/S0032-3861(97)10346-9

Cardozo, E., Contreras, R., Bellandi, F., Lopez-Rivera, A., Avendaño, J., Araque, C., & Vielma, J. (2015). Synthesis and characerization of six novel samarium(III) complexes with L-aspartic acid, L-glutamic acid, glycine and o-phenanthroline, bipiridile as ligands. Revista Politécnica, 36, 96-100.

Chen, Ch., Fei, B., Peng, S., Wu, H., Zhuang, Y., Chen, X., Dong, L., & Feng, Z. (2002). Synthesis and characterization of poly(b-hydroxybutyrate) and poly(e-caprolactone) copolyester by transesterification. J. Polym. Sci. Pol. Phys., 40,1893–1903. Doi:10.1002/polb.10242

Chu, B., Zhang, L., Qu, Y., Chen, X., Peng, J., Huang, Y., & Qian, Z. (2016). Synthesis, characterization and drug loading property of Monomethoxy-Poly(ethylene glycol)-Poly(ε-caprolactone)-Poly(D,L-lactide) (MPEG-PCLA) copolymers. Sci. Rep. 6, 34069. Doi: 10.1038/srep34069.

Contreras, J., & Dávila, D. (2006). Ring-opening copolymerization of L-lactide with ε-caprolactone initiated by diphenylzinc. Polym. Int., 55, 1049-1056. Doi: 10.1002/pi.

Contreras, J.M., Medina, D., López-Carrasquero, F., & Contreras, R. (2013). Ring-opening polymerization of ε-caprolactone initiated by samarium acetate. J. Polym. Res. 20, 244. Doi: 10.1007/s10965-013-0244-z

Contreras, J., Pestana, J., Lopez-Carrasquero, F & Torres, C. (2014). Synthesis of ε-caprolactone-b-L-lactide blockcopolymers by mean sequential polymerization, using diphenylzinc as initiator. Polym. Bull., 71, 1661–1674. Doi: 10.1007/s00289-014-1147-9

Contreras, J., Medina, D., Lopez-Carrasquero, F., & Contreras, R. (2019). Ring-Opening Polymerization of L-Lactide Initiated by Samarium(III) Acetate. Curr. Appl. Polym. Sci., 02, 3–1. Doi:10.2174/24522716666181114094536

Contreras-Ramírez, J., & Monsalve, M. (2019). Use of samarium (III) acetate as initiator in ring-opening polymerization of trimethylene carbonate. J. Macromol. Sci., A, 56, 1114-1120, Doi: 10.1080/10601325.2019.1658527.

Contreras-Ramírez, J., & Monsalve, M. (2020). Synthesis and characterization of poly(1-methyltrimethylene carbonate) (PMTMC) by mean ring-opening polymerization. Revista bases de la ciencia, 5, 21-36. Doi: 10.33936/rev_bas_de_la_ciencia.v5i3.1863.

Contreras-Ramírez, J., & Monsalve, M. (2021). Ring-Opening Polymerization of 2,2-Dimethyltrimethylene Carbonate Using Samarium Acetate (III) as an Initiator. Polym. Sci. Ser B+, 63, 94–102. Doi: 10.1134/S1560090421020044.

Contreras-Ramírez, J., Medina, D., & Monsalve, M. 2021. Poliésteres como biomateriales. Una revisión. Revista bases de la ciencia, 6, 113-136. Doi: 10.33936/rev_bas_de_la_ciencia.v6i2.3156

Contreras-Ramírez, J., & Monsalve, M. (2022). Synthesis and characterization of poly(trimetylene carbonate-co-ε-caprolactone) prepared by ring-opening polymerization using samarium(III) acetate as initiator. Int. J. Polym. Anal. Charact., 27, 16-31, Doi: 10.1080/1023666X.2021.1992580.

Cota, I. (2017). Developments in the use of rare earth metal complexes as efficient catalysts for ring-opening polymerization of cyclic esters used in biomedical applications. Phys. Sci. Rev. 2, 20160129. Doi:10.1515/psr-2016-0129

Dash, T., & Konkimalla, B. (2012). Polymeric Modification and Its Implication in Drug Delivery: Poly-ε-caprolactone (PCL) as a Model Polymer. Mol. Pharm., 9, 2365-2379. Doi: 10.1021/mp3001952

Dobrzynski, P. (2002). Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. III. Synthesis and chain-microstructure analysis of terpolymer obtained from L-lactide, glycolide, and ϵ-caprolactone initiated by zirconium(IV) acetylacetonate. J. Polym. Sci. Pol. Chem., 40, 3129-3143. Doi: 10.1002/pola.10401

Edlund, U., Albertsson, A., Singh, S., Fogelberg, I., & Lundgren, B. (2000). Sterilization, storage stability and in vivo biocompatibility of poly(trimethylene carbonate)/poly(adipic anhydride) blends. Biomaterials, 21, 945-955. DOI: 10.1016/s0142-9612(99)00268-9

Hofman, A., S1omkowski, S., & Penczek, S. (1984). Structure of active centers and mechanism of the anionic polymerization of lactones. Makromol. Chem., 185, 91-101. Doi: 10.1002/macp.1984.021850110.

Hofman, A., Szymanski, R., S1omkowski, S., & Penczek, S. (1984). Structure of active species in the cationic polymerization of β-propiolactone and ε-caprolactone. Makromol. Chem., 185, 655-667. Doi: 10.1002/macp.1984.021850405.

Huang, M., Chou, A., Lien, S., Chen, H., Huang, C., Chen, W., Chong, P., Liu, S., & Leng, C. (2009). Formulation and immunological evaluation of novel vaccine delivery systems based on bioresorbable poly(ethylene glycol)-block-poly(lactide-co-ε-caprolactone). J. Biomed. Mater. Res. B., 90, 832-841. Doi:10.1002/jbm.b.31352

Jérôme, C., & Lecomte, P. (2008). Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv. Drug Del. Rev., 60, 1056-1076. Doi: 10.1016/j.addr.2008.02.008

Kamaly, N., Yameen, B., Wu, J., & Farokhzad, C. (2016). Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 116, 2602–2663. Doi: 10.1021/acs.chemrev.5b00346.

Kasperczyk, J., & Bero, M. (1991). Coordination polymerization of lactides, 2. Microstructure determination of poly[(L,L-lactide)-co-(ε-caprolactone)] with 13C nuclear magnetic resonance spectroscopy. Makromol. Chem., 192, 1777-787. Doi: 10.1002/macp.1991.021920812

Khan, F., Tanaka, M., Ahmad, S. Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. (2015). J. Mater. Chem. B., 3, 8224–8249. Doi: 10.1039/C5TB01370D

Kricheldorf, H., & Dunsing, R. (1986). Polylactones, 8. Mechanism of the cationic polymerization of L,L-dilactide. Makromol. Chem., 187, 1611-1625. Doi: 10.1002/macp.1986.021870706

Ling, J., Zhu, W., & Shen, Z. 2004. Controlling ring-opening copolymerization of ε-caprolactone with trimethylene carbonate by scandium tris(2,6-di-tert-butyl-4-methylphenolate). Macromolecules, 37:758-763. Doi: 10.1021/ma035352f

Lu, X., Sun, Z., Cai, W., Gao, Z. (2008). Study on the shape memory effects of poly(L-lactide-co-ε-caprolactone) biodegradable polymers. J. Mater. Sci.: Mater. Med. 19, 395-399. Doi: 10.1007/s10856-006-0100-3

Madhavan, K., Nair, N., & John, R. (2010). An overview of the recent developments in polylactide (PLA) research, Bioresource Technology, 101, 8493-8501. DOI:10.1016/j.biortech.2010.05.092

Medina, D., Contreras, J., López-Carrasquero, F., Cardozo, E., & Contreras, R. (2017). Use of samarium(III)–amino acid complexes as initiators of ring-opening polymerization of cyclic esters. Polym. Bull., 75(3), 1253–1263. Doi:10.1007/s00289-017-2089-9

Monsalve, M., Contreras, J., & López-Carrasquero, F. (2009). Suplemento de la Revista Latinoamericana de Metalurgia y Materiales, S2 (1),137-138.

Monsalve, M., Contreras, J. (2014). Carbonatos orgánicos cíclicos como monómeros: síntesis y caracterización. Revista Científica UNET, 26:67-79.

Monsalve, M., Contreras, J., Cardozo, E., Contreras; R. (2015). Evaluación de la actividad de complejos de samario (III) con ácido L-aspártico, ácido L-glutámico, glicina y o-fenantrolina, como iniciadores en la polimerización de carbonatos cíclicos. Avances en Química, 10, 129-137.

Orchel, A., Jelonek, K., Kasperczyk, J., Dobrzynski, P., Marcinkowski, A., Pamula, I., Orchel, J., Bielecki, I., & Kulczycka, A. (2013). The Influence of Chain Microstructure of Biodegradable Copolyesters Obtained with Low-Toxic Zirconium Initiator to In Vitro Biocompatibility. BioMed Research International, Article ID 176946,1-12. DOI: 10.1155/2013/176946.

Pêgo, A., Grijpma, D., & Feijen, J. (2003). Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks. Polymer, 14:6495-6504. Doi: 0.1016/S0032-3861(03)00668-2.

Pêgo, A.; Zhong, Z. Y.; Dijkstra, P. J.; Grijpma, D. W.; Feijen, J. (2003). Influence of Catalyst and Polymerization Conditions on the Properties of 1,3-Trimethylene Carbonate and ε-Caprolactone Copolymers. Macromol. Chem. Phys., 204, 747-754. Doi: 10.1002/macp.200390043

Puthumana, M., Gopala, P., & Kumar, S. (2020). Chemical modifications of PLA through copolymerization. Int. J. Polym. Anal. Charact., 25, 634–648. DOI: 10.1080/1023666X.2020.1830650

Rokicki, G. (2000). Aliphatic cyclic carbonates and spiroorthocarbonates as monomers. Prog. Polym. Sci., 25, 259-342. Doi:10.1016/S0079-6700(00)00006-X

Rosa, R., Ferreira, F., & Lona, L. (2021). Modeling of Ring Opening Polymerization: A short review with insights on how to develop the method of moments. Chem. Eng. Sci., 246, 116934. DOI: 10.1016/j.ces.2021.116934.

Schappacher, M., Fabre, T., Mingotaud, A. F., & Soum, A. (2001). Study of a (trimethylenecarbonate-co-ε-caprolactone) polymer—Part 1: preparation of a new nerve guide through controlled random copolymerization using rare earth catalysts. Biomaterials, 22, 2849-2855. Doi: 10.1016/S0142-9612(01)00029-1

Shen, Z., Zhu, G., & Ling, J. (2002). Homo- and Copolymerization of ε-Caprolactone and 2,2-Dimethyltrimethylene Carbonate by Rare Earth Initiators. Chinese J. Chem., 20, 1362-1374. Doi: 10.1002/cjoc.20020201136

Stridsberg, K., Ryner, M., & Albertsson, A. (2002). Controlled Ring-Opening Polymerization: Polymers with designed Macromolecular Architecture. Adv. Polym. Sci., 157, 41-65. Doi:10.1007/3-540-45734-8_2

Van de Velde, K., & Kiekens, P. (2002). Material properties. Biopolymers: overview of several properties and consequences on their applications. Polym. Test, 21, 433–442. doi:10.1016/S0142-9418(01)00107-6.

Woodruff, A, & Hutmacher, D. (2010). The return of a forgotten polymer- Polycaprolactone in the 21st century. Prog. Polym. Sci., 35,1217–1256. Doi:10.1016/j.progpolymsci.2010.04.002

Zhu, K., Hendren, R., Jensen, K., & Pitt, C. (1991). Synthesis, Properties, and Biodegradation of Poly( 1,3-trimethylene carbonate), Macromolecules, 24, 1736-1740; doi:10.1021/ma00008a008.

Publicado

2023-01-01

Edição

Seção

Ciencias Químicas