Eficiencia de la cáscara de Musa paradisiaca como coagulante natural en el tratamiento de aguas residuales domésticas
Palabras clave:
Biocoagulante, tratamiento de agua, sostenibilidad, Musa paradisiaca, cloruro férrico.Resumen
La contaminación del agua es un grave problema global, especialmente en países en desarrollo, donde
muchas aguas residuales se vierten sin tratamiento, contribuyendo a enfermedades. El objetivo del presente estudio es evaluar la eficacia de la cáscara de plátano verde como coagulante natural en el tratamiento de las aguas residuales domésticas provenientes de la laguna de oxidación de la ciudad de Calceta, Ecuador.
Se recolectaron 10 litros de agua residual y se preparó el biocoagulante a partir de cáscaras de plátano. Las pruebas se realizaron en jarras con 400 ml de agua, aplicando concentraciones del biocoagulante de 100 a 2000 ppm y cloruro férrico (FeCl₃) de 100 a 2000 ppm. También se evaluó la combinación de cloruro férrico a 750 ppm con el biocoagulante en 10 y 400 ppm. Se midieron parámetros fisicoquímicos como pH, turbidez, conductividad, color, sólidos disueltos, sólidos suspendidos y sólidos totales, utilizando un diseño completamente al azar para todos los tratamientos y calculando el Índice de Calidad del Agua (ICA). Los
resultados mostraron que el biocoagulante de cáscara de plátano mejoró significativamente la calidad del agua, reduciendo la turbidez de 189 NTU a 6,2 NTU y los sólidos disueltos a 639 mg/L, manteniendo un pH estable de 7,5. La combinación con cloruro férrico resultó aún más eficaz, logrando notables reducciones en sólidos suspendidos y color, con un ICA de 57,79, destacando su potencial como alternativa sostenible frente al uso exclusivo de FeCl₃.
Descargas
Citas
Adams, E., Stoler, J. y Adams, Y. (2020). Water insecurity and urban poverty in the Global South: Implications for health and human biology. American Journal of Human Biology, 32(1). https://doi.org/10.1002/ajhb.23368
Adelodun, B., Ajibade, F., Ighalo, J., Odey, G., Ibrahim, R., Kareem, K., Bakare, H., Tiamiyu, A., Ajibade, T., Abdulkadir, T., Adeniran, K. y Choi, K. S. (2021). Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. Environmental Research, 192, 110309. https://doi.org/10.1016/j.envres.2020.110309
Akinnawo, S., Ayadi, P. y Oluwalope, M. (2023). Chemical coagulation and biological techniques for wastewater treatment. Ovidius University Annals of Chemistry, 34 (1), 14-21. https://doi.org/10.2478/auoc-2023-0003
Ang, W. y Mohammad, A. (2020). State of the art and sustainability of natural coagulants in water and wastewater treatment. Journal of Cleaner Production, 262, 121267. https://doi.org/10.1016/j.jclepro.2020.121267
Aripen, N., Halim, N., Saadon, S. y Jamil, N. (2023). The Usage of Banana Peels and Soybean Hull for the Treatment of Lake Water: Turbidity and Total Suspended Solids. Journal of Science and Technology, 15(1), 1-6. https://doi.org/10.30880/jst.2023.15.01.001
Azamzam, A., Rafatullah, M., Yahya, E., Ahmad, M., Lalung, J., Alam, M. y Siddiqui, M. (2022). Enhancing the Efficiency of Banana Peel Bio-Coagulant in Turbid and River Water Treatment Applications. Water, 14(16), 2473. https://doi.org/10.3390/w14162473
Badawi, Ahmad K., Reda S. Salama, and Mohamed Mokhtar M. Mostafa. (2023) Natural-Based Coagulants/Flocculants as Sustainable Market-Valued Products for Industrial Wastewater Treatment: A Review of Recent Developments. RSC Advances 13, no. 28: 19335–55. https://doi.org/10.1039/D3RA01999C.
Balpande, S. y Nagarnaik, D. (2020). Performance of natural and chemical based coagulant used in water and waste water treatment – a review. International Research Journal of Engineering and Technology (IRJET), 7(5), 727248 - 7253. https://www.irjet.net/archives/V7/i5/IRJET-V7I51364.pdf
Banchón, C. y Paredes, L. (2015). Tannery liming drum wastewater treatment by natural coagulants from C. spinosa, P. granatum, Eucalyptus SPP. and V. vinifera. International Journal of Current Research, 7(4), 14843-14849. https://www.journalcra.com/sites/default/files/issue-pdf/8284.pdf
Banchón C., Baquerizo R., Muñoz D., and Zambrano L (2016). Coagulación Natural Para La Descontaminación de Efluentes Industriales. Enfoque UTE 7, no. 4: 111–26. https://doi.org/10.29019/enfoqueute.v7n4.118.
Batrawy, O., Sonbati, M., Awadly, E. y Hegazy, T. (2020). Study on ferric chloride coagulation process and fenton’s reaction for pretreatment of dairy wastewater. International Current Science, 10, 366-370. 0.36632/csi/2020.9.1.x
Bhatt, A., Arora, P. y Prajapati, S. (2020). Occurrence, fates and potential treatment approaches for removal of viruses from wastewater: A review with emphasis on SARS-CoV-2. Journal of Environmental Chemical Engineering, 8(5), 104429. https://doi.org/10.1016/j.jece.2020.104429
Cerón, I. y Garzón, N. (2015). Evaluación de la semilla de moringa oleífera como coadyudante en el proceso de coagulación para el tratamiento de aguas naturales del rio Bogotá en su paso por el municipio de villapinzón Cundinamarca [Tesis de grado, Universidad Libre]. Repositorio Institucional UL. http://repository.unilibre.edu.co/handle/10901/8109
Chong, K. y Kiew, P. (2017). Potential of Banana Peels as Bio-Flocculant for Water Clarification. Revista de Progress in Energy and Environment, 1, 47-56. https://www.akademiabaru.com/submit/index.php/progee/article/view/1034
Conde, T. y Domínguez, J. (2021). Evaluación de la eficiencia coagulante-floculante de la cáscara de cacao (CCN-51) y yuca (Manihot esculenta) en agua superficial: Río Tenguel [Tesis de grado, Universidad de Guayaquil]. Repositorio Institucional UG. http://repositorio.ug.edu.ec/handle/redug/57968
Daffi, R., Alfa, M., Wamyil, F. y Lagasi, J. (2023). Comparative Study of the Effectiveness of Banana and Lemon Peels Powder as Natural Coagulants for Domestic Wastewater Treatment. Journal of Engineering and Technology, 8(2). https://doi.org/10.46792/fuoyejet.v8i2.1000
Daverey, A., Tiwari, N. y Dutta, K. (2019). Utilization of extracts of Musa paradisica (banana) peels and Dolichos lablab (Indian bean) seeds as low-cost natural coagulants for turbidity removal from water. Environmental Science and Pollution Research, 26(33), 34177-34183. https://doi.org/10.1007/s11356-018-3850-9
Deshmukh, S. y Hedaoo, M. (2019). Wastewater Treatment Using Bio-Coagulant as Cactus Opuntia Ficus Indica. Energy and Environmental Engineering, 6(10), 2321-0613. https://n9.cl/vhz58
Dharsana, M. y Prakash, A. (2023). Nano-banana peel bio-coagulant in applications for the treatment of turbid and river water. Desalination Water Treat, 294, 100-110. https://doi.org/10.5004/dwt.2023.29491
Dhrubo, A. A., Jannat, M. y Hossain, Md. (2023). Enhancing the performance of coagulants for wastewater treatment by varying and optimizing the experimental parameters. Journal of Water Process Engineering, 55, 104144. https://doi.org/10.1016/j.jwpe.2023.104144
Dos Santos, Silvânia Lucas, and Adrianus Van Haandel. (2021) Transformation of Waste Stabilization Ponds: Reengineering of an Obsolete Sewage Treatment System. Water 13,9: 1193. https://doi.org/10.3390/w13091193.
Ferrer, E. (2018). Tratamiento biológico aerobio para aguas residuales con elevada conductividad y concentración de fenoles [Tesis de grado, Universitat Politècnica de València]. Repositorio institucional UPV. https://doi.org/10.4995/Thesis/10251/83382
Fragoso, P., Rubiano, L., Kerguelen, J., Fragoso, P., Rubiano, L. y Kerguelen, J. (2021). Análisis de variables físico-químicas en el proceso de remoción de coliformes en el sistema de lagunas de oxidación, Salguero, Valledupar (Colombia). Revista de Información tecnológica, 32(1), 113-122. https://doi.org/10.4067/S071 8-07642021000100113
Fu, Y., Meng, X., Lu, N., Jian, H. y Di, Y. (2019). Characteristics changes in banana peel coagulant during storage process. International Journal of Environmental Science and Technology, 16, 1-10. https://doi.org/10.1007/s13762-018-02188-0
Gad, M., Abdo, M., Hu, A., El-Liethy, A., Hellal, S., Doma, S., y Ali, H. (2022). Performance Assessment of Natural Wastewater Treatment Plants by Multivariate Statistical Models: A Case Study. Sustainability, 14(13), Article 13. https://doi.org/10.3390/su14137658
Gandiwa, B. I., Moyo, L. B., Ncube, S., Mamvura, T. A., Mguni, L. L. y Hlabangana, N. (2020). Optimisation of using a blend of plant based natural and synthetic coagulants for water treatment:(Moringa Oleifera-Cactus Opuntia-alum blend). South African Journal of Chemical Engineering, 34, 158-164. https://doi.org/10.1016/j.sajce.2020.07.005
González, M., Pérez, L. y Ramírez, J. (2021). Combination of ferric chloride and Moringa oleifera seed extract for the treatment of industrial wastewater. Journal of Environmental Management, 256, 109956.
Guerra Atauje, M. y Polo Velezmoro, D. A. (2021). Uso del plátano (Musa paradisiaca) como coagulante para el tratamiento de las aguas residuales del Río Rímac en Matucana–2021 [Tesis de grado, Universidad César Vallejo]. Repositorio Institucional UCV. https://hdl.handle.net/20.500.12692/84349
Guzmán, S. (2020). Tratamiento de aguas de drenaje de mina mediante biocoagulación con Caesalpinia spinosa (Guarango) [Tesis de grado, Universidad de las Américas]. Repositorio Institucional UDLA http://dspace.udla.edu.ec/handle/33000/12055
Hernández, F., Margni, M., Noyola, A., Guereca, L. y Bulle, C. (2017). Assessing wastewater treatment in Latin America and the Caribbean: Enhancing life cycle assessment interpretation by regionalization and impact assessment sensibility. Journal of Cleaner Production, 142, 2140-2153. https://doi.org/10.1016/j.jclepro.2016.11.068
Huaira, P. y Moran, W. (2024). Evaluación del cloruro férrico y amonio cuaternario en la reducción de turbidez de aguas del río Shulcas [Tesis de grado, Universidad Continental]. Repositorio Institucional UC. https://hdl.handle.net/20.500.12394/14754
Hube, S. y Wu, B. (2021). Mitigation of emerging pollutants and pathogens in decentralized wastewater treatment processes: A review. Revista de Science of the Total Environment, 779, 146545. https://doi.org/10.1016/j.scitotenv.2021.146545
Jiménez, E. y Perilla, A. (2019). Análisis del efecto coagulante de la semilla moringa oleífera para el tratamiento de aguas residuales en el hotel Ítaca. Revista Udistrital, 13(2), 59-69. https://geox.udistrital.edu.co/index.php/bsa/article/view/15873
Kakoi, B., Kaluli, J., Ndiba, P. y Thiong’o, G. (2017). Optimization of Maerua Decumbent bio-coagulant in paint industry wastewater treatment with response surface methodology. Journal of Cleaner Production, 164, 1124-1134. https://doi.org/10.1016/j.jclepro.2017.06.240
Kalibbala, H., Olupot, P. y Ambani, O. (2023). Synthesis and efficacy of cactus-banana peels composite as a natural coagulant for water treatment. Results in Engineering, 17, 100945. https://doi.org/10.1016/j.rineng.2023.100945
Karam, A., Bakhoum, E. y Zaher, K. (2020). Coagulation/flocculation process for textile mill effluent treatment: experimental and numerical perspectives. International Journal of Sustainable Engineering, 14 (5), 983–995. https://doi.org/10.1080/19397038.2020.1842547
López, D., Martínez, E. y Torres, F. (2020). Uso de Residuos Agrícolas como Coagulantes Naturales en el Tratamiento de Aguas. Environmental Science and Pollution Research, 27(12), 14567-14575.
Lyon, S., Goethals, P., Schneider, P., Dominguez, L., Hampel, H., Lam, N., Nolivos, I., Reinstorf, F., Tejeda, R., Vázquez, R. y Ho, L. (2019). Improving Water Management Education across the Latin America and Caribbean Region. Water, 11(11), 2318. https://doi.org/10.3390/w11112318
Mansouri, A., Bousserhane, K. y Zaghbib, S. (2021). Performance of ferric chloride in industrial wastewater treatment: effects on solids and organic matter removal. Environmental Science and Pollution Research, 28(15), 19180-19192.
Maurya, S. y Daverey, A. (2018). Evaluation of plant-based natural coagulants for municipal wastewater treatment. 3 Biotech, 8(1), 77. https://doi.org/10.1007/s13205-018-1103-8
Mekonnen, M., Pahlow, M., Aldaya, M., Zarate, E. y Hoekstra, A. (2015). Sustainability, Efficiency and Equitability of Water Consumption and Pollution in Latin America and the Caribbean. Sustainability, 7(2), 2086-2112. https://doi.org/10.3390/su7022086
Mero, J., Párraga, A., Mero, E. y Villafuerte, S. (2022). Contaminantes biológicos presentes en fuentes de agua del centro-sur de la provincia de Manabí, Ecuador. Revista Siembra, 9(2). https://doi.org/10.29166/siembra.v9i2.4011
Mokhtar, N., Priyatharishini, M. y Kristanti, R. (2019). Study on the Effectiveness of Banana Peel Coagulant in Turbidity Reduction of Synthetic Wastewater. International Journal of Engineering Technology and Sciences, 6(1), 82-90. https://doi.org/10.15282/ijets.v6i1.2109
Muhamad, N., Juhari, N. y Mohamad, I. (2020). Efficiency of Natural Plant-Based Coagulants for Water Treatment. IOP Conference Series: Earth and Environmental Science, 616(1), 012075. https://doi.org/10.1088/1755-1315/616/1/012075
Owodunni, A. y Ismail, S. (2021). Revolutionary technique for sustainable plant-based green coagulants in industrial wastewater treatment-A review. Journal of Water Process Engineering, 42, 102096. https://doi.org/10.1016/j.jwpe.2021.102096
Padilla, K., Pimienta, G. y Mercado, I. (2020). Evaluación de la mezcla de un coagulante químico-natural en el proceso de clarificación de una ciénaga. Revista UIS Ingenierías, 19(3), 49-60. https://doi.org/10.18273/revuin.v19n3-2020005
Prathna, T. C. y Srivastava, A. (2021). Ferric chloride for odour control: Studies from wastewater treatment plants in India. Water Practice & Technology, 16(1), 35-41. https://doi.org/10.2166/wpt.2020.111
Precious Sibiya, N., Rathilal, S. y Kweinor Tetteh, E. (2021). Wastewater coagulation treatment: kinetics and evaluation of natural coagulants. Molecules, 26 (3), 698. 10.3390/moléculas26030698
Putra, R. y Airun, N. (2021). The effect of particle size and dosage on the performance of Papaya seeds (Carica papaya) as biocoagulant on wastewater treatment of batik industry. IOP Conference Series: Materials Science and Engineering, 1087. https://doi.org/10.1088/1757-899X/1087/1/012045
Qadir, M., Drechsel, P., Jiménez, B., Kim, Y., Pramanik, A., Mehta, P. y Olaniyan, O. (2020). Global and regional potential of wastewater as a water, nutrient and energy source. Natural Resources Forum, 44(1), 40-51. https://doi.org/10.1111/1477-8947.12187
Qadri, H. y Bhat, R. (2020). Fresh Water Pollution Dynamics and Remediation. Springer Nature. https://doi.org/10.1007/978-981-13-8277-2
Rajala, K., Grönfors, O., Hesampour, M., y Mikola, A. (2020). Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Research, 183, 116045. https://doi.org/10.1016/j.watres.2020.116045
Rajasulochana, P. y Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, 2(4), 175-184. https://doi.org/10.1016/j.reffit.2016.09.004
Rashuaman, K. (2024). Comparación de la eficiencia de tratamiento en la remoción de materia orgánica entre opuntia ficus-indica y cloruro férrico para las aguas del río Mantaro-2023 [Tesis de grado, Universidad Continental]. Repositorio Institucional UC. https://repositorio.continental.edu.pe/handle/20.500.12394/15535
Revelo, A., Proaño, D. y Banchón, C. (2015). Biocoagulación de aguas residuales de industria textilera mediante extractos de Caesalpinia spinosa. Enfoque UTE, 6(1), 1-12. https://doi.org/10.29019/enfoqueute.v6n1.50
Robledo, J. (2023). Evaluación del Índice de Calidad de Agua ICA-NSF en las microcuencas del Parque Nacional Río Dulce como herramienta en la gestión integral del manejo sustentable, Livingston, Izabal, Guatemala, Centroamérica. Revista Tecnología en Marcha, 36(1), 106-116. https://doi.org/10.18845/tm.v36i1.6241
Ruiz, M. y Amaya, J. (2021). Evaluación del biocoagulante extraído de la semilla de moringa (m. oleífera) como coadyuvante en el proceso de coagulación para el tratamiento de aguas superficiales en la cuenca Río Molino (Popayán-Cauca) [Tesis de grado, Corporación Universitaria Autónoma Del Cauca]. http://repositorio.uniautonoma.edu.co/handle/123456789/608
Sani, M. U., & Muhammad, A. K. (2021). Assessment of phytochemical and mineral composition of unripe and ripe plantain (Musa paradisiaca) peels. African Journal of Food Science, 15(3), 107–112. https://doi.org/10.5897/AJFS2017.1680
Shabanizadeh, H. y Taghavijeloudar, M. (2023). A sustainable approach to industrial wastewater treatment using pomegranate seeds in the flocculation-coagulation process: optimization of COD and turbidity removal by response surface methodology (RSM). Journal of Water Process Engineering, 53, 103651. https://doi.org/10.1016/j.jwpe.2023.103651
Shan, T., Matar, M., Makky, E. y Ali, E. (2017). The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal Appl Water Sci, 7(3), 1369-1376. https://doi.org/10.1007/s13201-016-0499-8
Sulaiman, M., Zhigila, DA, Mohammed, K., Umar, DM, Aliyu, B. y Abd Manan, F. (2019). Semilla de Moringa oleifera como coagulante natural alternativo para una posible aplicación en el tratamiento del agua: una revisión. Revista de investigación avanzada en ciencia de los materiales, 56 (1), 11-21. https://doi.org/10.1016/j.jwpe.2023.103651
Syukriani, L., Febjislami, S., Lubis, D. S., Hidayati, R., Asben, A., Suliansyah, I., & Jamsari, J. (2021). Physicochemical characterization of peel, flesh and banana fruit cv. Raja [Musa paradisiaca]. IOP Conference Series: Earth and Environmental Science, 741(1), 012006. https://doi.org/10.1088/1755-1315/741/1/012006
Turcios, A., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka, A., Cifuentes, J., Pignataro, G., Avellan, T. y Papenbrock, J. (2021). From natural habitats to successful Application-Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583
Yongabi, K. (2010). Biocoagulants for Water and Waste Water Purification: A Review. International Review of Chemical Engineering, 2(3). https://www.researchgate.net/publication/265532081_Biocoagulants_for_Water_and_Waste_Water_Purification_a_Review
Zahrim, A., Dexter, Z. D., Joseph, C. y Hilal, N. (2017). Effective coagulation-flocculation treatment of highly polluted palm oil mill biogas plant wastewater using dual coagulants: Decolourisation, kinetics and phytotoxicity studies. Journal of water process engineering, 16, 258-269. https://doi.org/10.1016/j.jwpe.2017.02.005
Zaidi, N. (2019). Potential of Fruit Peels in Becoming Natural Coagulant for Water Treatment. International Journal of Integrated Engineering, 11(1), 140-150. https://penerbit.uthm.edu.my/ojs/index.php/ijie/article/view/4289
Zaki, N., Hadoudi, N., Charki, A., Bensitel, N., Ouarghi, H., Amhamdi, H. y Ahari, M. (2023). Advancements in the chemical treatment of potable water and industrial wastewater using the coagulation–flocculation process. Separation Science and Technology, 58(15–16), 2619–2630. https://doi.org/10.1080/01496395.2023.2219381
Zamora, E., Carmona, R. y Brabata, G. (2007). Distribución de aves acuáticas en las lagunas de oxidación de la ciudad de La Paz, Baja California Sur, México. Revista de Biología Tropical, 55(2), 617-626. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442007000200022
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Roy Loor , Magaly Zamora, Carlos Banchón

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.