Eficiencia de la cáscara de Musa paradisiaca como coagulante natural en el tratamiento de aguas residuales domésticas

Autores

Palavras-chave:

Biocoagulante, tratamiento de agua, sostenibilidad, Musa paradisiaca, cloruro férrico.

Resumo

O artigo de pesquisa aborda o uso de biocoagulante derivado de cascas de banana no tratamento de águas residuais, combinado com cloreto férrico para avaliar sua eficácia. Seis tratamentos diferentes foram desenvolvidos, utilizando várias proporções de biocoagulante de casca de banana e cloreto férrico, com o objetivo de determinar qual combinação oferece a melhor clarificação da água residual. O biocoagulante de casca de banana foi obtido por meio de um processo de extração e preparação adequada, garantindo que as propriedades coagulantes naturais da casca de banana fossem preservadas no produto final. Os seis tratamentos variaram nas proporções de biocoagulante e cloreto férrico utilizados, permitindo estabelecer comparações significativas entre eles. Durante o estudo, foram realizados testes de clarificação utilizando amostras de água residual tratadas com cada combinação de biocoagulante e cloreto férrico. Os parâmetros de qualidade da água, como turbidez, conteúdo de sólidos suspensos e outros indicadores de contaminação, foram monitorados antes e depois do tratamento para avaliar a eficácia de cada método.

Downloads

Não há dados estatísticos.

Referências

Adams, E., Stoler, J. y Adams, Y. (2020). Water insecurity and urban poverty in the Global South: Implications for health and human biology. American Journal of Human Biology, 32(1). https://doi.org/10.1002/ajhb.23368

Adelodun, B., Ajibade, F., Ighalo, J., Odey, G., Ibrahim, R., Kareem, K., Bakare, H., Tiamiyu, A., Ajibade, T., Abdulkadir, T., Adeniran, K. y Choi, K. S. (2021). Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. Environmental Research, 192, 110309. https://doi.org/10.1016/j.envres.2020.110309

Akinnawo, S., Ayadi, P. y Oluwalope, M. (2023). Chemical coagulation and biological techniques for wastewater treatment. Ovidius University Annals of Chemistry, 34 (1), 14-21. https://doi.org/10.2478/auoc-2023-0003

Ang, W. y Mohammad, A. (2020). State of the art and sustainability of natural coagulants in water and wastewater treatment. Journal of Cleaner Production, 262, 121267. https://doi.org/10.1016/j.jclepro.2020.121267

Aripen, N., Halim, N., Saadon, S. y Jamil, N. (2023). The Usage of Banana Peels and Soybean Hull for the Treatment of Lake Water: Turbidity and Total Suspended Solids. Journal of Science and Technology, 15(1), 1-6. https://doi.org/10.30880/jst.2023.15.01.001

Azamzam, A., Rafatullah, M., Yahya, E., Ahmad, M., Lalung, J., Alam, M. y Siddiqui, M. (2022). Enhancing the Efficiency of Banana Peel Bio-Coagulant in Turbid and River Water Treatment Applications. Water, 14(16), 2473. https://doi.org/10.3390/w14162473

Badawi, Ahmad K., Reda S. Salama, and Mohamed Mokhtar M. Mostafa. (2023) Natural-Based Coagulants/Flocculants as Sustainable Market-Valued Products for Industrial Wastewater Treatment: A Review of Recent Developments. RSC Advances 13, no. 28: 19335–55. https://doi.org/10.1039/D3RA01999C.

Balpande, S. y Nagarnaik, D. (2020). Performance of natural and chemical based coagulant used in water and waste water treatment – a review. International Research Journal of Engineering and Technology (IRJET), 7(5), 727248 - 7253. https://www.irjet.net/archives/V7/i5/IRJET-V7I51364.pdf

Banchón, C. y Paredes, L. (2015). Tannery liming drum wastewater treatment by natural coagulants from C. spinosa, P. granatum, Eucalyptus SPP. and V. vinifera. International Journal of Current Research, 7(4), 14843-14849. https://www.journalcra.com/sites/default/files/issue-pdf/8284.pdf

Banchón C., Baquerizo R., Muñoz D., and Zambrano L (2016). Coagulación Natural Para La Descontaminación de Efluentes Industriales. Enfoque UTE 7, no. 4: 111–26. https://doi.org/10.29019/enfoqueute.v7n4.118.

Batrawy, O., Sonbati, M., Awadly, E. y Hegazy, T. (2020). Study on ferric chloride coagulation process and fenton’s reaction for pretreatment of dairy wastewater. International Current Science, 10, 366-370. 0.36632/csi/2020.9.1.x

Bhatt, A., Arora, P. y Prajapati, S. (2020). Occurrence, fates and potential treatment approaches for removal of viruses from wastewater: A review with emphasis on SARS-CoV-2. Journal of Environmental Chemical Engineering, 8(5), 104429. https://doi.org/10.1016/j.jece.2020.104429

Cerón, I. y Garzón, N. (2015). Evaluación de la semilla de moringa oleífera como coadyudante en el proceso de coagulación para el tratamiento de aguas naturales del rio Bogotá en su paso por el municipio de villapinzón Cundinamarca [Tesis de grado, Universidad Libre]. Repositorio Institucional UL. http://repository.unilibre.edu.co/handle/10901/8109

Chong, K. y Kiew, P. (2017). Potential of Banana Peels as Bio-Flocculant for Water Clarification. Revista de Progress in Energy and Environment, 1, 47-56. https://www.akademiabaru.com/submit/index.php/progee/article/view/1034

Conde, T. y Domínguez, J. (2021). Evaluación de la eficiencia coagulante-floculante de la cáscara de cacao (CCN-51) y yuca (Manihot esculenta) en agua superficial: Río Tenguel [Tesis de grado, Universidad de Guayaquil]. Repositorio Institucional UG. http://repositorio.ug.edu.ec/handle/redug/57968

Daffi, R., Alfa, M., Wamyil, F. y Lagasi, J. (2023). Comparative Study of the Effectiveness of Banana and Lemon Peels Powder as Natural Coagulants for Domestic Wastewater Treatment. Journal of Engineering and Technology, 8(2). https://doi.org/10.46792/fuoyejet.v8i2.1000

Daverey, A., Tiwari, N. y Dutta, K. (2019). Utilization of extracts of Musa paradisica (banana) peels and Dolichos lablab (Indian bean) seeds as low-cost natural coagulants for turbidity removal from water. Environmental Science and Pollution Research, 26(33), 34177-34183. https://doi.org/10.1007/s11356-018-3850-9

Deshmukh, S. y Hedaoo, M. (2019). Wastewater Treatment Using Bio-Coagulant as Cactus Opuntia Ficus Indica. Energy and Environmental Engineering, 6(10), 2321-0613. https://n9.cl/vhz58

Dharsana, M. y Prakash, A. (2023). Nano-banana peel bio-coagulant in applications for the treatment of turbid and river water. Desalination Water Treat, 294, 100-110. https://doi.org/10.5004/dwt.2023.29491

Dhrubo, A. A., Jannat, M. y Hossain, Md. (2023). Enhancing the performance of coagulants for wastewater treatment by varying and optimizing the experimental parameters. Journal of Water Process Engineering, 55, 104144. https://doi.org/10.1016/j.jwpe.2023.104144

Dos Santos, Silvânia Lucas, and Adrianus Van Haandel. (2021) Transformation of Waste Stabilization Ponds: Reengineering of an Obsolete Sewage Treatment System. Water 13,9: 1193. https://doi.org/10.3390/w13091193.

Ferrer, E. (2018). Tratamiento biológico aerobio para aguas residuales con elevada conductividad y concentración de fenoles [Tesis de grado, Universitat Politècnica de València]. Repositorio institucional UPV. https://doi.org/10.4995/Thesis/10251/83382

Fragoso, P., Rubiano, L., Kerguelen, J., Fragoso, P., Rubiano, L. y Kerguelen, J. (2021). Análisis de variables físico-químicas en el proceso de remoción de coliformes en el sistema de lagunas de oxidación, Salguero, Valledupar (Colombia). Revista de Información tecnológica, 32(1), 113-122. https://doi.org/10.4067/S071 8-07642021000100113

Fu, Y., Meng, X., Lu, N., Jian, H. y Di, Y. (2019). Characteristics changes in banana peel coagulant during storage process. International Journal of Environmental Science and Technology, 16, 1-10. https://doi.org/10.1007/s13762-018-02188-0

Gad, M., Abdo, M., Hu, A., El-Liethy, A., Hellal, S., Doma, S., y Ali, H. (2022). Performance Assessment of Natural Wastewater Treatment Plants by Multivariate Statistical Models: A Case Study. Sustainability, 14(13), Article 13. https://doi.org/10.3390/su14137658

Gandiwa, B. I., Moyo, L. B., Ncube, S., Mamvura, T. A., Mguni, L. L. y Hlabangana, N. (2020). Optimisation of using a blend of plant based natural and synthetic coagulants for water treatment:(Moringa Oleifera-Cactus Opuntia-alum blend). South African Journal of Chemical Engineering, 34, 158-164. https://doi.org/10.1016/j.sajce.2020.07.005

González, M., Pérez, L. y Ramírez, J. (2021). Combination of ferric chloride and Moringa oleifera seed extract for the treatment of industrial wastewater. Journal of Environmental Management, 256, 109956.

Guerra Atauje, M. y Polo Velezmoro, D. A. (2021). Uso del plátano (Musa paradisiaca) como coagulante para el tratamiento de las aguas residuales del Río Rímac en Matucana–2021 [Tesis de grado, Universidad César Vallejo]. Repositorio Institucional UCV. https://hdl.handle.net/20.500.12692/84349

Guzmán, S. (2020). Tratamiento de aguas de drenaje de mina mediante biocoagulación con Caesalpinia spinosa (Guarango) [Tesis de grado, Universidad de las Américas]. Repositorio Institucional UDLA http://dspace.udla.edu.ec/handle/33000/12055

Hernández, F., Margni, M., Noyola, A., Guereca, L. y Bulle, C. (2017). Assessing wastewater treatment in Latin America and the Caribbean: Enhancing life cycle assessment interpretation by regionalization and impact assessment sensibility. Journal of Cleaner Production, 142, 2140-2153. https://doi.org/10.1016/j.jclepro.2016.11.068

Huaira, P. y Moran, W. (2024). Evaluación del cloruro férrico y amonio cuaternario en la reducción de turbidez de aguas del río Shulcas [Tesis de grado, Universidad Continental]. Repositorio Institucional UC. https://hdl.handle.net/20.500.12394/14754

Hube, S. y Wu, B. (2021). Mitigation of emerging pollutants and pathogens in decentralized wastewater treatment processes: A review. Revista de Science of the Total Environment, 779, 146545. https://doi.org/10.1016/j.scitotenv.2021.146545

Jiménez, E. y Perilla, A. (2019). Análisis del efecto coagulante de la semilla moringa oleífera para el tratamiento de aguas residuales en el hotel Ítaca. Revista Udistrital, 13(2), 59-69. https://geox.udistrital.edu.co/index.php/bsa/article/view/15873

Kakoi, B., Kaluli, J., Ndiba, P. y Thiong’o, G. (2017). Optimization of Maerua Decumbent bio-coagulant in paint industry wastewater treatment with response surface methodology. Journal of Cleaner Production, 164, 1124-1134. https://doi.org/10.1016/j.jclepro.2017.06.240

Kalibbala, H., Olupot, P. y Ambani, O. (2023). Synthesis and efficacy of cactus-banana peels composite as a natural coagulant for water treatment. Results in Engineering, 17, 100945. https://doi.org/10.1016/j.rineng.2023.100945

Karam, A., Bakhoum, E. y Zaher, K. (2020). Coagulation/flocculation process for textile mill effluent treatment: experimental and numerical perspectives. International Journal of Sustainable Engineering, 14 (5), 983–995. https://doi.org/10.1080/19397038.2020.1842547

López, D., Martínez, E. y Torres, F. (2020). Uso de Residuos Agrícolas como Coagulantes Naturales en el Tratamiento de Aguas. Environmental Science and Pollution Research, 27(12), 14567-14575.

Lyon, S., Goethals, P., Schneider, P., Dominguez, L., Hampel, H., Lam, N., Nolivos, I., Reinstorf, F., Tejeda, R., Vázquez, R. y Ho, L. (2019). Improving Water Management Education across the Latin America and Caribbean Region. Water, 11(11), 2318. https://doi.org/10.3390/w11112318

Mansouri, A., Bousserhane, K. y Zaghbib, S. (2021). Performance of ferric chloride in industrial wastewater treatment: effects on solids and organic matter removal. Environmental Science and Pollution Research, 28(15), 19180-19192.

Maurya, S. y Daverey, A. (2018). Evaluation of plant-based natural coagulants for municipal wastewater treatment. 3 Biotech, 8(1), 77. https://doi.org/10.1007/s13205-018-1103-8

Mekonnen, M., Pahlow, M., Aldaya, M., Zarate, E. y Hoekstra, A. (2015). Sustainability, Efficiency and Equitability of Water Consumption and Pollution in Latin America and the Caribbean. Sustainability, 7(2), 2086-2112. https://doi.org/10.3390/su7022086

Mero, J., Párraga, A., Mero, E. y Villafuerte, S. (2022). Contaminantes biológicos presentes en fuentes de agua del centro-sur de la provincia de Manabí, Ecuador. Revista Siembra, 9(2). https://doi.org/10.29166/siembra.v9i2.4011

Mokhtar, N., Priyatharishini, M. y Kristanti, R. (2019). Study on the Effectiveness of Banana Peel Coagulant in Turbidity Reduction of Synthetic Wastewater. International Journal of Engineering Technology and Sciences, 6(1), 82-90. https://doi.org/10.15282/ijets.v6i1.2109

Muhamad, N., Juhari, N. y Mohamad, I. (2020). Efficiency of Natural Plant-Based Coagulants for Water Treatment. IOP Conference Series: Earth and Environmental Science, 616(1), 012075. https://doi.org/10.1088/1755-1315/616/1/012075

Owodunni, A. y Ismail, S. (2021). Revolutionary technique for sustainable plant-based green coagulants in industrial wastewater treatment-A review. Journal of Water Process Engineering, 42, 102096. https://doi.org/10.1016/j.jwpe.2021.102096

Padilla, K., Pimienta, G. y Mercado, I. (2020). Evaluación de la mezcla de un coagulante químico-natural en el proceso de clarificación de una ciénaga. Revista UIS Ingenierías, 19(3), 49-60. https://doi.org/10.18273/revuin.v19n3-2020005

Prathna, T. C. y Srivastava, A. (2021). Ferric chloride for odour control: Studies from wastewater treatment plants in India. Water Practice & Technology, 16(1), 35-41. https://doi.org/10.2166/wpt.2020.111

Precious Sibiya, N., Rathilal, S. y Kweinor Tetteh, E. (2021). Wastewater coagulation treatment: kinetics and evaluation of natural coagulants. Molecules, 26 (3), 698. 10.3390/moléculas26030698

Putra, R. y Airun, N. (2021). The effect of particle size and dosage on the performance of Papaya seeds (Carica papaya) as biocoagulant on wastewater treatment of batik industry. IOP Conference Series: Materials Science and Engineering, 1087. https://doi.org/10.1088/1757-899X/1087/1/012045

Qadir, M., Drechsel, P., Jiménez, B., Kim, Y., Pramanik, A., Mehta, P. y Olaniyan, O. (2020). Global and regional potential of wastewater as a water, nutrient and energy source. Natural Resources Forum, 44(1), 40-51. https://doi.org/10.1111/1477-8947.12187

Qadri, H. y Bhat, R. (2020). Fresh Water Pollution Dynamics and Remediation. Springer Nature. https://doi.org/10.1007/978-981-13-8277-2

Rajala, K., Grönfors, O., Hesampour, M., y Mikola, A. (2020). Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Research, 183, 116045. https://doi.org/10.1016/j.watres.2020.116045

Rajasulochana, P. y Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, 2(4), 175-184. https://doi.org/10.1016/j.reffit.2016.09.004

Rashuaman, K. (2024). Comparación de la eficiencia de tratamiento en la remoción de materia orgánica entre opuntia ficus-indica y cloruro férrico para las aguas del río Mantaro-2023 [Tesis de grado, Universidad Continental]. Repositorio Institucional UC. https://repositorio.continental.edu.pe/handle/20.500.12394/15535

Revelo, A., Proaño, D. y Banchón, C. (2015). Biocoagulación de aguas residuales de industria textilera mediante extractos de Caesalpinia spinosa. Enfoque UTE, 6(1), 1-12. https://doi.org/10.29019/enfoqueute.v6n1.50

Robledo, J. (2023). Evaluación del Índice de Calidad de Agua ICA-NSF en las microcuencas del Parque Nacional Río Dulce como herramienta en la gestión integral del manejo sustentable, Livingston, Izabal, Guatemala, Centroamérica. Revista Tecnología en Marcha, 36(1), 106-116. https://doi.org/10.18845/tm.v36i1.6241

Ruiz, M. y Amaya, J. (2021). Evaluación del biocoagulante extraído de la semilla de moringa (m. oleífera) como coadyuvante en el proceso de coagulación para el tratamiento de aguas superficiales en la cuenca Río Molino (Popayán-Cauca) [Tesis de grado, Corporación Universitaria Autónoma Del Cauca]. http://repositorio.uniautonoma.edu.co/handle/123456789/608

Sani, M. U., & Muhammad, A. K. (2021). Assessment of phytochemical and mineral composition of unripe and ripe plantain (Musa paradisiaca) peels. African Journal of Food Science, 15(3), 107–112. https://doi.org/10.5897/AJFS2017.1680

Shabanizadeh, H. y Taghavijeloudar, M. (2023). A sustainable approach to industrial wastewater treatment using pomegranate seeds in the flocculation-coagulation process: optimization of COD and turbidity removal by response surface methodology (RSM). Journal of Water Process Engineering, 53, 103651. https://doi.org/10.1016/j.jwpe.2023.103651

Shan, T., Matar, M., Makky, E. y Ali, E. (2017). The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal Appl Water Sci, 7(3), 1369-1376. https://doi.org/10.1007/s13201-016-0499-8

Sulaiman, M., Zhigila, DA, Mohammed, K., Umar, DM, Aliyu, B. y Abd Manan, F. (2019). Semilla de Moringa oleifera como coagulante natural alternativo para una posible aplicación en el tratamiento del agua: una revisión. Revista de investigación avanzada en ciencia de los materiales, 56 (1), 11-21. https://doi.org/10.1016/j.jwpe.2023.103651

Syukriani, L., Febjislami, S., Lubis, D. S., Hidayati, R., Asben, A., Suliansyah, I., & Jamsari, J. (2021). Physicochemical characterization of peel, flesh and banana fruit cv. Raja [Musa paradisiaca]. IOP Conference Series: Earth and Environmental Science, 741(1), 012006. https://doi.org/10.1088/1755-1315/741/1/012006

Turcios, A., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka, A., Cifuentes, J., Pignataro, G., Avellan, T. y Papenbrock, J. (2021). From natural habitats to successful Application-Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583

Yongabi, K. (2010). Biocoagulants for Water and Waste Water Purification: A Review. International Review of Chemical Engineering, 2(3). https://www.researchgate.net/publication/265532081_Biocoagulants_for_Water_and_Waste_Water_Purification_a_Review

Zahrim, A., Dexter, Z. D., Joseph, C. y Hilal, N. (2017). Effective coagulation-flocculation treatment of highly polluted palm oil mill biogas plant wastewater using dual coagulants: Decolourisation, kinetics and phytotoxicity studies. Journal of water process engineering, 16, 258-269. https://doi.org/10.1016/j.jwpe.2017.02.005

Zaidi, N. (2019). Potential of Fruit Peels in Becoming Natural Coagulant for Water Treatment. International Journal of Integrated Engineering, 11(1), 140-150. https://penerbit.uthm.edu.my/ojs/index.php/ijie/article/view/4289

Zaki, N., Hadoudi, N., Charki, A., Bensitel, N., Ouarghi, H., Amhamdi, H. y Ahari, M. (2023). Advancements in the chemical treatment of potable water and industrial wastewater using the coagulation–flocculation process. Separation Science and Technology, 58(15–16), 2619–2630. https://doi.org/10.1080/01496395.2023.2219381

Zamora, E., Carmona, R. y Brabata, G. (2007). Distribución de aves acuáticas en las lagunas de oxidación de la ciudad de La Paz, Baja California Sur, México. Revista de Biología Tropical, 55(2), 617-626. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442007000200022

Publicado

2025-02-10

Edição

Seção

Ciencias Químicas