Mejores prácticas para la implementación de Fog Computing: Análisis de casos de éxito

Autores/as

DOI:

https://doi.org/10.33936/isrtic.v9i1.7323

Palabras clave:

Fog Computing, agricultura, salud, ciudades inteligentes, mejores prácticas

Resumen

El Fog Computing se ha convertido en una tecnología clave para mejorar el procesamiento y almacenamiento de datos en la agricultura, la salud y las ciudades inteligentes, acercando la computación al punto de generación de datos. Este estudio lleva a cabo una revisión sistemática sobre la aplicación de esta tecnología en los sectores mencionados, con el propósito de identificar las mejores prácticas basándose en casos de éxito, empleando la metodología PRISMA. Se examinaron 43 investigaciones publicadas entre 2020 y 2024, evaluando aspectos como la seguridad, interoperabilidad, escalabilidad y eficiencia operativa. A partir del análisis, se identificaron beneficios clave y desafíos pendientes en la adopción del Fog Computing, lo que permitió proponer un conjunto de mejores prácticas que abordan aspectos críticos, como la interoperabilidad, la optimización del procesamiento distribuido y la integración con infraestructuras existentes. Esta propuesta tiene como objetivo ofrecer un marco de referencia para la adopción de Fog Computing en sectores clave, con el propósito de asistir a las organizaciones en la optimización de sus procesos y en el aprovechamiento más eficaz de los beneficios que brinda esta innovación.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdali, T.-A. N., Ahmed, S., & Hussain, A. (2021). Fog Computing advancement: Concept, architecture, applications, advantages, and open issues. IEEE Access, 9, 75968–75988. https://doi.org/10.1109/ACCESS.2021.3081770

Afzal, A., Alam, M., & Raza, A. (2025). A latency-aware and fault-tolerant framework for resource scheduling and data management in fog-enabled smart city transportation systems. Journal of Network and Computer Applications, 212, 103453. https://doi.org/10.32604/cmc.2024.057755

Al Yarubi, K. S., Khairy, S. O. F., Hossain, S. M. E., & Hayder, G. (2025). Gestión de residuos basada en el Internet de las Cosas: Sentando las bases para ciudades inteligentes sostenibles. Processes, 13(4), 1140. https://doi.org/10.3390/pr13041140

Alharbi, H. A., Yosuf, B. A., Aldossary, M., Almutairi, J., & Elmirghani, J. M. H. (2022). Energy-efficient UAV-based service offloading over cloud-fog architectures. IEEE Access, 10, 89598–89612. https://doi.org/10.1109/ACCESS.2022.3201112

Alharbi, H. A., & Aldossary, M. (2021). Energy-efficient edge-fog-cloud architecture for IoT-based smart agriculture environment. IEEE Internet of Things Journal, 10(7), 8874–8891. https://doi.org/10.1109/ACCESS.2021.3101397

AlQahtani, F. (2023). An Evaluation of e-Health Service Performance through the Integration of 5G IoT, Fog, and Cloud Computing. IEEE Access. https://doi.org/10.3390/s23115006

Alwakeel, A. M., & Alnaim, A. K. (2024). Trust management and resource optimization in edge and Fog Computing using the CyberGuard framework. Sensors, 24, 4308. https://doi.org/10.3390/s24134308

Arthi, V., & Krishnaveni, K. (2024). Optimized Tiny Machine Learning and Explainable AI for Trustable and Energy-Efficient Fog-Enabled Healthcare Decision Support System. Expert Systems with Applications. https://doi.org/10.1007/s44196-024-00631-4

Bavaresco, R., Silveira, D., Reis, E., Barbosa, J., Righi, R., Costa, C., Antunes, R., Gomes, M., Gatti, C., Vanzin, M., Junior, S. C., Silva, E., & Moreira, C. (2020). Conversational agents in business: A systematic literature review and future research directions. Computer Science Review, 36, 100239. https://doi.org/10.1016/j.cosrev.2020.100239

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog Computing and its role in the internet of things. Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, 13–16. https://doi.org/10.1145/2342509.2342513

Britto Corthis, P., Ramesh, G. P., García-Torres, M., & Ruíz, R. (2024). Effective Identification and Authentication of Healthcare IoT Using Fog Computing with Hybrid Cryptographic Algorithm. Security and Privacy. https://doi.org/10.3390/sym16060726

Cárdenas Villavicencio, O. E., Zea Ordoñez, M. P., Honores Tapia, J. A., & Lamar Peña, F. S. (2024). Visiones del futuro urbano: El paradigma teórico de las Smart Cities. Informática y Sistemas: Revista de Tecnologías de la Informática y las Comunicaciones, 8(1). https://doi.org/10.33936/isrtic.v8i1.6324

Daraghmi, E., & Al-Khazraji, H. (2022). Edge-fog-cloud computing hierarchy for improving performance and security of NB-IoT-based health monitoring systems. Internet of Things, 19, 100485. https://doi.org/10.3390/s22228646

Dutta, P., Mehta, K., & Zhang, Y. (2023). Fog-based architecture and load balancing methodology for health monitoring systems. IEEE Transactions on Cloud Computing, 11(1), 123–140. https://doi.org/10.1109/ACCESS.2021.3094033

Elhadad, A., Alanazi, F., Taloba, A. I., & Abozeid, A. (2022). Fog Computing Service in the Healthcare Monitoring System for Managing the Real-Time Notification. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1155/2022/5337733

Hao, J., & Ho, T. K. (2019). Aprendizaje automático simplificado: Una revisión del paquete Scikit-learn en el lenguaje de programación Python. Journal of Educational and Behavioral Statistics, 44(3), 348–361. https://doi.org/10.3102/1076998619832248

Hong, S., Park, S., Youn, H., Lee, J., & Kwon, S. (2024). Implementation of smart farm systems based on Fog Computing in artificial intelligence of things environments. Sensors, 24, 6689. https://doi.org/10.3390/s24206689

Huang, Y.-T., Chen, T.-S., & Wang, S.-D. (2023). Authenticated Key Agreement Scheme for Fog Computing in a Health-Care Environment. Sensors. https://doi.org/10.1109/ACCESS.2023.3275017

ISO/IEC. (2020). Internet of Things (IoT) standards. https://www.iso.org/obp/ui/

Kalyani, Y., & Collier, R. (2021). A systematic survey on the role of Cloud, Fog, and Edge Computing combination in smart agriculture. Sensors, 21(17), 5922. https://doi.org/10.3390/s21175922

Karimi, A., Razi, N., & Rezazadeh, J. (2024). An IoT healthcare system based on Fog Computing and data mining: A diabetic use case. Applied Sciences, 14(7924). https://doi.org/10.3390/app14177924

Kim, J., Choi, N., & Yang, X. (2023). FETCH: A deep learning-based Fog Computing and IoT integrated environment for healthcare monitoring and diagnosis. IEEE Transactions on Medical Imaging, 42(4), 789–805. https://doi.org/10.1109/ACCESS.2022.3143793

Kirsanova, A. A., Radchenko, G. I., & Tchernykh, A. N. (2021). Fog Computing state of the art: Concept and classification of platforms to support distributed computing systems. Supercomputing Frontiers and Innovations, 8(3), 88–109. https://doi.org/10.14529/jsfi210302

Kopras, B., Bossy, B., Idzikowski, F., Kryszkiewicz, P., & Bogucka, H. (2022). Task allocation for energy optimization in Fog Computing networks with latency constraints. IEEE Transactions on Communications, 70(12), 8229–8242. https://doi.org/10.1109/TCOMM.2022.3216645

Kumar, A., & Neduncheliyan, A. (2024). A shark-inspired ensemble deep learning stack for ensuring security in IoT-based smart city infrastructure. Journal of Artificial Intelligence and Cybersecurity, 3, 1–17. https://doi.org/10.1007/s44196-024-00649-8

Lamar Peña, F. S., Vega Mite, G. A., Honores Tapia, J. A., & Cárdenas Villavicencio, O. E. (2024). Validación y emisión de certificados en Educación Superior utilizando tecnología Blockchain. Informática y Sistemas: Revista de Tecnologías de la Informática y las Comunicaciones, 8(1), 36. https://doi.org/10.33936/isrtic.v8i1.6535

Lee, K., Silva, B. N., & Han, K. (2020). Deep Learning Entrusted to Fog Nodes (DLEFN) based smart agriculture. Applied Sciences, 10(4), 1544. https://doi.org/10.3390/app10041544

Liutkevičius, A., & Šešok, D. (2022). Distributed agent-based orchestrator model for Fog Computing. Computers & Electrical Engineering, 102, 108204. https://doi.org/10.3390/s22155894

Marković, D., Stamenković, Z., Đorđević, B., & Ranđić, S. (2024). Image processing for smart agriculture applications using cloud-Fog Computing. Sensors, 24, 5965. https://doi.org/10.3390/s24185965

Mesfer, A. I., Al-Wesabi, F. N., Marzouk, R., Musa, A. I. A., Negm, N., Hilal, A. M., Hamza, M. A., & Rizwanullah, M. (2022). Integration of Fog Computing for Health Record Management Using Blockchain Technology. Computers in Biology and Medicine. https://doi.org/10.32604/cmc.2022.022336

Miao, X., Zhang, J., Li, T., & Wang, Y. (2024). A microservice-based smart agriculture system to detect animal intrusion at the edge. Sensors, 24(3), 4456. https://doi.org/10.3390/fi16080296

Mohanty, S., Das, R., & Pradhan, A. (2024). Prevention of soil erosion, prediction soil NPK and moisture for protecting structural deformities in mining areas using fog-assisted smart agriculture system. Computers and Electronics in Agriculture, 205, 107459. https://doi.org/10.1016/j.procs.2024.04.239

Núñez-Gómez, C., Caminero, B., & Carrión, C. (2021). HIDRA: A distributed blockchain-based architecture for fog/edge computing environments. IEEE Access, 9, 75231–75245. https://doi.org/10.1109/ACCESS.2021.3082197

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1016/j.ijsu.2021.105906

Qayyum, T., Trabelsi, Z., Malik, A. W., & Hayawi, K. (2021). Multi-level resource sharing framework using collaborative fog environment for smart cities. IEEE Access, 9, 21859–21875. https://doi.org/10.1109/ACCESS.2021.3054420

Quy, V. K., Hau, N. V., Anh, D. V., & Ngoc, L. A. (2022). Smart Healthcare IoT Applications Based on Fog Computing: Architecture, Applications, and Challenges. Internet of Things Journal. https://doi.org/10.1007/s40747-021-00582-9

Rehman, A., & Alharbi, O. (2025). Bioinspired blockchain framework for secure and scalable wireless sensor network integration in fog–cloud ecosystems. Computers, 14(3). https://doi.org/10.3390/computers14010003

Rodríguez Veliz, M. J., & Moreira Alcivar, J. I. (2025). Cripto-Nube: integración de computación en la nube y blockchain en sectores empresariales: Systematic Literature Review. Revista Científica De Informática ENCRIPTAR, 8(15), 245–268. https://doi.org/10.56124/encriptar.v8i15.01369

Sanguino Reyes, M. R. (2020). A systematic review of the literature on information technology outsourcing services. Journal of Physics: Conference Series, 1513(1), 012007. https://doi.org/10.1088/1742-6596/1513/1/012007

Shahzad, A., Gherbi, A., & Zhang, K. (2022). Enabling fog-blockchain computing for autonomous-vehicle-parking system: A solution to reinforce IoT-cloud platform for future smart parking. Sensors, 22(13), 4849. https://doi.org/10.3390/s22134849

Shynu, P., Lakshmana, R., Kadry, S., & Nam, Y. (2023). Blockchain-based secure healthcare application for diabetic-cardio disease prediction in Fog Computing. IEEE Transactions on Biomedical Engineering, 70(3), 201–215. https://doi.org/10.1109/ACCESS.2021.3065440

Songhorabadi, M., Rahimi, M., Moghaddam Farid, A. M., & Haghi Kashani, M. (2021). Fog Computing approaches in smart cities: A state-of-the-art review. arXiv Access, 9, 123456–123469. https://doi.org/10.48550/arXiv.2011.14732

Taneja, M., Jalodia, N., & Prakash, A. (2020). Machine learning-based Fog Computing assisted data-driven approach for early lameness detection in dairy cattle. Journal of Dairy Science, 103(12), 11247–11263. https://doi.org/10.1016/j.compag.2020.105286

Tang, C., Wei, X., Zhu, C., Wang, Y., & Jia, W. (2020). Mobile vehicles as fog nodes for latency optimization in smart cities. IEEE Transactions on Vehicular Technology, 69(9), 9364–9375. https://doi.org/10.1109/TVT.2020.2970763

Tang, Z., Tang, Z., Liu, Y., Tang, Z., & Liao, Y. (2024). Smart Healthcare Systems: A New IoT-Fog-Based Disease Diagnosis Framework for Smart Healthcare Projects. Future Generation Computer Systems. https://doi.org/10.1016/j.asej.2024.102941

Tariq, A., Khan, M. Z., & Saeed, A. (2024). A fog-edge-enabled intrusion detection system for smart grids. Sustainable Computing: Informatics and Systems, 37, 100962. https://doi.org/10.1186/s13677-024-00609-9

Thakur, A., & Malekian, R. (2019). Fog Computing for detecting vehicular congestion: An Internet of Vehicles-based approach. IEEE Intelligent Transportation Systems Magazine, 11(2), 8–16. https://doi.org/10.1109/MITS.2019.2903551

Tripathy, S. S., Bebortta, S., Chowdhary, C. L., Mukherjee, T., Kim, S., Jana, S., & Ijaz, M. F. (2024). FedHealthFog: A Federated Learning-Enabled Approach Towards Healthcare Analytics Over Fog Computing Platform. Journal of Medical Systems. https://doi.org/10.1016/j.heliyon.2024.e26416

Tripathy, P., Mishra, A., & Behera, B. (2024). A secure mist-fog-assisted cooperative offloading framework for sustainable smart city development. Future Generation Computer Systems, 148, 230–244. https://doi.org/10.1016/j.dcan.2024.12.008

Wang, F., Zhang, M., Wang, X., Ma, X., & Liu, J. (2020). Deep learning for edge computing applications: A state-of-the-art survey. IEEE Access, 8, 58322–58345. https://doi.org/10.1109/ACCESS.2020.2982411

Zhang, X., Cao, Z., & Dong, W. (2020). Overview of edge computing in the agricultural Internet of Things: Key technologies, applications, challenges. IEEE Access, 8, 141748–141765. https://doi.org/10.1109/ACCESS.2020.3013005

Zhang, W., & Li, G. (2020). An efficient and secure data transmission mechanism for Internet of Vehicles considering privacy protection in Fog Computing environment. IEEE Access, 8, 64461–64474. https://doi.org/10.1109/ACCESS.2020.2983994

Publicado

2025-04-25

Cómo citar

[1]
Echeverria Salazar, A.M., Zea Ordoñez, M.P. y Cárdenas Villavicencio, O.E. 2025. Mejores prácticas para la implementación de Fog Computing: Análisis de casos de éxito. Informática y Sistemas. 9, 1 (abr. 2025), 52–69. DOI:https://doi.org/10.33936/isrtic.v9i1.7323.

Número

Sección

Artículos regulares

Artículos más leídos del mismo autor/a