Best Practices for Fog Computing Implementation: Analysis of Success Cases
DOI:
https://doi.org/10.33936/isrtic.v9i1.7323Keywords:
Fog Computing, agriculture, healthcare, smart cities, best practicesAbstract
Fog Computing has emerged as a key technology for enhancing data processing and storage in agriculture, healthcare, and smart cities by bringing computing closer to the data generation point. This study provides a systematic literature review on the adoption methodology. Studies published between 2020 and 2024 were analyzed, aspects such as interoperability, scalability security, and operational efficiency were evaluated. This analysis identifies the key benefits and challenges associated with the adoption of Fog Computing, allowing for the development of a set of best practices that tackle critical issues such as interoperability, optimization of distributed processing, and integration with existing infrastructures. This proposal is intended to provide a framework for the implementation of Fog Computing in key sectors, supporting organizations in enhancing their processes and optimizing the benefits that this innovation can offer more effectivelyDownloads
References
Abdali, T.-A. N., Ahmed, S., & Hussain, A. (2021). Fog Computing advancement: Concept, architecture, applications, advantages, and open issues. IEEE Access, 9, 75968–75988. https://doi.org/10.1109/ACCESS.2021.3081770
Afzal, A., Alam, M., & Raza, A. (2025). A latency-aware and fault-tolerant framework for resource scheduling and data management in fog-enabled smart city transportation systems. Journal of Network and Computer Applications, 212, 103453. https://doi.org/10.32604/cmc.2024.057755
Al Yarubi, K. S., Khairy, S. O. F., Hossain, S. M. E., & Hayder, G. (2025). Gestión de residuos basada en el Internet de las Cosas: Sentando las bases para ciudades inteligentes sostenibles. Processes, 13(4), 1140. https://doi.org/10.3390/pr13041140
Alharbi, H. A., Yosuf, B. A., Aldossary, M., Almutairi, J., & Elmirghani, J. M. H. (2022). Energy-efficient UAV-based service offloading over cloud-fog architectures. IEEE Access, 10, 89598–89612. https://doi.org/10.1109/ACCESS.2022.3201112
Alharbi, H. A., & Aldossary, M. (2021). Energy-efficient edge-fog-cloud architecture for IoT-based smart agriculture environment. IEEE Internet of Things Journal, 10(7), 8874–8891. https://doi.org/10.1109/ACCESS.2021.3101397
AlQahtani, F. (2023). An Evaluation of e-Health Service Performance through the Integration of 5G IoT, Fog, and Cloud Computing. IEEE Access. https://doi.org/10.3390/s23115006
Alwakeel, A. M., & Alnaim, A. K. (2024). Trust management and resource optimization in edge and Fog Computing using the CyberGuard framework. Sensors, 24, 4308. https://doi.org/10.3390/s24134308
Arthi, V., & Krishnaveni, K. (2024). Optimized Tiny Machine Learning and Explainable AI for Trustable and Energy-Efficient Fog-Enabled Healthcare Decision Support System. Expert Systems with Applications. https://doi.org/10.1007/s44196-024-00631-4
Bavaresco, R., Silveira, D., Reis, E., Barbosa, J., Righi, R., Costa, C., Antunes, R., Gomes, M., Gatti, C., Vanzin, M., Junior, S. C., Silva, E., & Moreira, C. (2020). Conversational agents in business: A systematic literature review and future research directions. Computer Science Review, 36, 100239. https://doi.org/10.1016/j.cosrev.2020.100239
Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog Computing and its role in the internet of things. Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, 13–16. https://doi.org/10.1145/2342509.2342513
Britto Corthis, P., Ramesh, G. P., García-Torres, M., & Ruíz, R. (2024). Effective Identification and Authentication of Healthcare IoT Using Fog Computing with Hybrid Cryptographic Algorithm. Security and Privacy. https://doi.org/10.3390/sym16060726
Cárdenas Villavicencio, O. E., Zea Ordoñez, M. P., Honores Tapia, J. A., & Lamar Peña, F. S. (2024). Visiones del futuro urbano: El paradigma teórico de las Smart Cities. Informática y Sistemas: Revista de Tecnologías de la Informática y las Comunicaciones, 8(1). https://doi.org/10.33936/isrtic.v8i1.6324
Daraghmi, E., & Al-Khazraji, H. (2022). Edge-fog-cloud computing hierarchy for improving performance and security of NB-IoT-based health monitoring systems. Internet of Things, 19, 100485. https://doi.org/10.3390/s22228646
Dutta, P., Mehta, K., & Zhang, Y. (2023). Fog-based architecture and load balancing methodology for health monitoring systems. IEEE Transactions on Cloud Computing, 11(1), 123–140. https://doi.org/10.1109/ACCESS.2021.3094033
Elhadad, A., Alanazi, F., Taloba, A. I., & Abozeid, A. (2022). Fog Computing Service in the Healthcare Monitoring System for Managing the Real-Time Notification. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1155/2022/5337733
Hao, J., & Ho, T. K. (2019). Aprendizaje automático simplificado: Una revisión del paquete Scikit-learn en el lenguaje de programación Python. Journal of Educational and Behavioral Statistics, 44(3), 348–361. https://doi.org/10.3102/1076998619832248
Hong, S., Park, S., Youn, H., Lee, J., & Kwon, S. (2024). Implementation of smart farm systems based on Fog Computing in artificial intelligence of things environments. Sensors, 24, 6689. https://doi.org/10.3390/s24206689
Huang, Y.-T., Chen, T.-S., & Wang, S.-D. (2023). Authenticated Key Agreement Scheme for Fog Computing in a Health-Care Environment. Sensors. https://doi.org/10.1109/ACCESS.2023.3275017
ISO/IEC. (2020). Internet of Things (IoT) standards. https://www.iso.org/obp/ui/
Kalyani, Y., & Collier, R. (2021). A systematic survey on the role of Cloud, Fog, and Edge Computing combination in smart agriculture. Sensors, 21(17), 5922. https://doi.org/10.3390/s21175922
Karimi, A., Razi, N., & Rezazadeh, J. (2024). An IoT healthcare system based on Fog Computing and data mining: A diabetic use case. Applied Sciences, 14(7924). https://doi.org/10.3390/app14177924
Kim, J., Choi, N., & Yang, X. (2023). FETCH: A deep learning-based Fog Computing and IoT integrated environment for healthcare monitoring and diagnosis. IEEE Transactions on Medical Imaging, 42(4), 789–805. https://doi.org/10.1109/ACCESS.2022.3143793
Kirsanova, A. A., Radchenko, G. I., & Tchernykh, A. N. (2021). Fog Computing state of the art: Concept and classification of platforms to support distributed computing systems. Supercomputing Frontiers and Innovations, 8(3), 88–109. https://doi.org/10.14529/jsfi210302
Kopras, B., Bossy, B., Idzikowski, F., Kryszkiewicz, P., & Bogucka, H. (2022). Task allocation for energy optimization in Fog Computing networks with latency constraints. IEEE Transactions on Communications, 70(12), 8229–8242. https://doi.org/10.1109/TCOMM.2022.3216645
Kumar, A., & Neduncheliyan, A. (2024). A shark-inspired ensemble deep learning stack for ensuring security in IoT-based smart city infrastructure. Journal of Artificial Intelligence and Cybersecurity, 3, 1–17. https://doi.org/10.1007/s44196-024-00649-8
Lamar Peña, F. S., Vega Mite, G. A., Honores Tapia, J. A., & Cárdenas Villavicencio, O. E. (2024). Validación y emisión de certificados en Educación Superior utilizando tecnología Blockchain. Informática y Sistemas: Revista de Tecnologías de la Informática y las Comunicaciones, 8(1), 36. https://doi.org/10.33936/isrtic.v8i1.6535
Lee, K., Silva, B. N., & Han, K. (2020). Deep Learning Entrusted to Fog Nodes (DLEFN) based smart agriculture. Applied Sciences, 10(4), 1544. https://doi.org/10.3390/app10041544
Liutkevičius, A., & Šešok, D. (2022). Distributed agent-based orchestrator model for Fog Computing. Computers & Electrical Engineering, 102, 108204. https://doi.org/10.3390/s22155894
Marković, D., Stamenković, Z., Đorđević, B., & Ranđić, S. (2024). Image processing for smart agriculture applications using cloud-Fog Computing. Sensors, 24, 5965. https://doi.org/10.3390/s24185965
Mesfer, A. I., Al-Wesabi, F. N., Marzouk, R., Musa, A. I. A., Negm, N., Hilal, A. M., Hamza, M. A., & Rizwanullah, M. (2022). Integration of Fog Computing for Health Record Management Using Blockchain Technology. Computers in Biology and Medicine. https://doi.org/10.32604/cmc.2022.022336
Miao, X., Zhang, J., Li, T., & Wang, Y. (2024). A microservice-based smart agriculture system to detect animal intrusion at the edge. Sensors, 24(3), 4456. https://doi.org/10.3390/fi16080296
Mohanty, S., Das, R., & Pradhan, A. (2024). Prevention of soil erosion, prediction soil NPK and moisture for protecting structural deformities in mining areas using fog-assisted smart agriculture system. Computers and Electronics in Agriculture, 205, 107459. https://doi.org/10.1016/j.procs.2024.04.239
Núñez-Gómez, C., Caminero, B., & Carrión, C. (2021). HIDRA: A distributed blockchain-based architecture for fog/edge computing environments. IEEE Access, 9, 75231–75245. https://doi.org/10.1109/ACCESS.2021.3082197
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1016/j.ijsu.2021.105906
Qayyum, T., Trabelsi, Z., Malik, A. W., & Hayawi, K. (2021). Multi-level resource sharing framework using collaborative fog environment for smart cities. IEEE Access, 9, 21859–21875. https://doi.org/10.1109/ACCESS.2021.3054420
Quy, V. K., Hau, N. V., Anh, D. V., & Ngoc, L. A. (2022). Smart Healthcare IoT Applications Based on Fog Computing: Architecture, Applications, and Challenges. Internet of Things Journal. https://doi.org/10.1007/s40747-021-00582-9
Rehman, A., & Alharbi, O. (2025). Bioinspired blockchain framework for secure and scalable wireless sensor network integration in fog–cloud ecosystems. Computers, 14(3). https://doi.org/10.3390/computers14010003
Rodríguez Veliz, M. J., & Moreira Alcivar, J. I. (2025). Cripto-Nube: integración de computación en la nube y blockchain en sectores empresariales: Systematic Literature Review. Revista Científica De Informática ENCRIPTAR, 8(15), 245–268. https://doi.org/10.56124/encriptar.v8i15.01369
Sanguino Reyes, M. R. (2020). A systematic review of the literature on information technology outsourcing services. Journal of Physics: Conference Series, 1513(1), 012007. https://doi.org/10.1088/1742-6596/1513/1/012007
Shahzad, A., Gherbi, A., & Zhang, K. (2022). Enabling fog-blockchain computing for autonomous-vehicle-parking system: A solution to reinforce IoT-cloud platform for future smart parking. Sensors, 22(13), 4849. https://doi.org/10.3390/s22134849
Shynu, P., Lakshmana, R., Kadry, S., & Nam, Y. (2023). Blockchain-based secure healthcare application for diabetic-cardio disease prediction in Fog Computing. IEEE Transactions on Biomedical Engineering, 70(3), 201–215. https://doi.org/10.1109/ACCESS.2021.3065440
Songhorabadi, M., Rahimi, M., Moghaddam Farid, A. M., & Haghi Kashani, M. (2021). Fog Computing approaches in smart cities: A state-of-the-art review. arXiv Access, 9, 123456–123469. https://doi.org/10.48550/arXiv.2011.14732
Taneja, M., Jalodia, N., & Prakash, A. (2020). Machine learning-based Fog Computing assisted data-driven approach for early lameness detection in dairy cattle. Journal of Dairy Science, 103(12), 11247–11263. https://doi.org/10.1016/j.compag.2020.105286
Tang, C., Wei, X., Zhu, C., Wang, Y., & Jia, W. (2020). Mobile vehicles as fog nodes for latency optimization in smart cities. IEEE Transactions on Vehicular Technology, 69(9), 9364–9375. https://doi.org/10.1109/TVT.2020.2970763
Tang, Z., Tang, Z., Liu, Y., Tang, Z., & Liao, Y. (2024). Smart Healthcare Systems: A New IoT-Fog-Based Disease Diagnosis Framework for Smart Healthcare Projects. Future Generation Computer Systems. https://doi.org/10.1016/j.asej.2024.102941
Tariq, A., Khan, M. Z., & Saeed, A. (2024). A fog-edge-enabled intrusion detection system for smart grids. Sustainable Computing: Informatics and Systems, 37, 100962. https://doi.org/10.1186/s13677-024-00609-9
Thakur, A., & Malekian, R. (2019). Fog Computing for detecting vehicular congestion: An Internet of Vehicles-based approach. IEEE Intelligent Transportation Systems Magazine, 11(2), 8–16. https://doi.org/10.1109/MITS.2019.2903551
Tripathy, S. S., Bebortta, S., Chowdhary, C. L., Mukherjee, T., Kim, S., Jana, S., & Ijaz, M. F. (2024). FedHealthFog: A Federated Learning-Enabled Approach Towards Healthcare Analytics Over Fog Computing Platform. Journal of Medical Systems. https://doi.org/10.1016/j.heliyon.2024.e26416
Tripathy, P., Mishra, A., & Behera, B. (2024). A secure mist-fog-assisted cooperative offloading framework for sustainable smart city development. Future Generation Computer Systems, 148, 230–244. https://doi.org/10.1016/j.dcan.2024.12.008
Wang, F., Zhang, M., Wang, X., Ma, X., & Liu, J. (2020). Deep learning for edge computing applications: A state-of-the-art survey. IEEE Access, 8, 58322–58345. https://doi.org/10.1109/ACCESS.2020.2982411
Zhang, X., Cao, Z., & Dong, W. (2020). Overview of edge computing in the agricultural Internet of Things: Key technologies, applications, challenges. IEEE Access, 8, 141748–141765. https://doi.org/10.1109/ACCESS.2020.3013005
Zhang, W., & Li, G. (2020). An efficient and secure data transmission mechanism for Internet of Vehicles considering privacy protection in Fog Computing environment. IEEE Access, 8, 64461–64474. https://doi.org/10.1109/ACCESS.2020.2983994
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Abraham Moises Echeverria Salazar, Mariuxi Paola Zea Ordoñez, Oscar Efrén Cárdenas Villavicencio

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles submitted to this journal for publication will be released for open access under a Creative Commons Attribution Non-Commercial No Derivative Works licence (http://creativecommons.org/licenses/by-nc-nd/4.0).
The authors retain copyright, and are therefore free to share, copy, distribute, perform and publicly communicate the work under the following conditions: Acknowledge credit for the work specified by the author and indicate if changes were made (you may do so in any reasonable way, but not in a way that suggests that the author endorses your use of his or her work. Do not use the work for commercial purposes. In case of remixing, transformation or development, the modified material may not be distributed.



