Análisis de la alimentación en regiones del Ecuador mediante Big Data
DOI:
https://doi.org/10.33936/isrtic.v5i2.3946Keywords:
Food, Big Data, Power BI, Python, TwitterAbstract
Healthy eating is a relevant element for people's well-being; helps to avoid malnutrition, as well as non-communicable diseases, therefore, it is important to know those are the foods most consumed by Ecuadorians according to the region in which they reside, in order to determine how the diet is present in these regions influences the health of its inhabitants. In this research, an analysis of the types of diet in the Costa and Sierra regions of Ecuador is carried out. For this, social networks were used as data sources, since they are increasingly used to share information or opinions about situations or elements of various kinds, Twitter being the one used, as it is one of the most important social networks for this. . The data collection of the social network Twitter was carried out through the use of the Python programming language and was focused on Tweets that allude to food, comparing data from the cities of the Sierra and the Coast, classifying healthy and unhealthy foods and types of foods, which makes it possible to identify the most relevant foods in each region. The evaluation of the Tweets is also analyzed, in terms of number of interactions thereof. Obtaining that healthier foods are consumed in the Sierra; the results are displayed in different reports in Power BI.
Downloads
References
alimentación». En: El Telégrafo Ecuador (oct. de 2020).
[2] Adriana Amaya-Hernández, Mayaro Ortega-Luyando y Juan M Mancilla-Dıéaz. «Cómo, qué y por
qué ocuparnos de la alimentación». En: Journal of Behavior and Feeding 1.1 (2021), págs. 51-59.
[3] María Antonieta Chacha Cha. «¿La publicidad de alimentos incide en el consumo?» En: El Universo
| La Revista | Salud (oct. de 2020).
[4] Cepal y Pma. «Estudio revela mala calidad de alimentación en Ecuador». En: Edición Méédica |
Salud Pública (mayo de 2017).
[5] Julián Villodre, Anne Marie Reynaers y J Ignacio Criado. «Transparencia externa y redes sociales.
Los roles diferenciales de ministerios y organismos públicos estatales en Twitter». En: Revista de
estudios polıéticos 192 (2021), págs. 191-220.
[6] Daniel Revillo Rey. «Infraestructura software para el análisis de las interacciones en Twitter: apli-
cación a la detección de trastornos de conducta alimentaria». En: Universidad de Zaragoza (2020).
[7] Laura Mıéguez Fernández. «Influencia de las redes sociales en la alimentación saludable». En:
universidad pontificia comillas (2019).
[8] Tweepy.
[9]
S. Niveditha Jayesh Chaudhary. «Twitter Sentiment Analysis using Tweepy». En: International
Research Journal of Engineering and Technology (IRJET) 8.4 (2021).
[10] Tweepy. Search Methods.
[11] Viorel Negrut. «Power bi: Effective data aggregation». En: Quaestus 13 (2018), págs. 146-152.
[12] Tatiana Blanco Rojas, Diana Milena Archila Córdoba y Javier Antonio Ballesteros-Ricaurte. «Ges-
tión de datos obtenidos desde redes sociales aplicando Business Intelligence Engineering Process».
En: Revista Virtual Universidad Católica del Norte 49 (2016), págs. 72-91.
[13] Bernardino Meseguer Barrionuevo & et al. «El business intelligence en las PYMES: herramienta
power BI». En: (2016), págs. 1-12.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Victor Noe Sanchez Carreño, Jandry Hernaldo Franco Cantos, Maria Jose Velez Cedeño, Marely Del Rosario Cruz Felipe

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles submitted to this journal for publication will be released for open access under a Creative Commons Attribution Non-Commercial No Derivative Works licence (http://creativecommons.org/licenses/by-nc-nd/4.0).
The authors retain copyright, and are therefore free to share, copy, distribute, perform and publicly communicate the work under the following conditions: Acknowledge credit for the work specified by the author and indicate if changes were made (you may do so in any reasonable way, but not in a way that suggests that the author endorses your use of his or her work. Do not use the work for commercial purposes. In case of remixing, transformation or development, the modified material may not be distributed.



