Best Practices in the Implementation of Edge Computing: A Case Study Approach

Authors

DOI:

https://doi.org/10.33936/isrtic.v8i2.6879

Keywords:

Edge Computing, best practices, video surveillance, agriculture, healthcare

Abstract

Edge computing has emerged as a key technology for transforming various industrial sectors, offering advanced data processing and storage capabilities near the point of generation. This study presents a systematic literature review on the implementation of this technology in video surveillance, agriculture, and healthcare, aiming to identify best practices from success cases using the PRISMA methodology. We analyzed 42 studies published between 2020 and 2024, evaluating aspects such as security, interoperability, operational efficiency, and scalability. The results reveal high compliance in operational efficiency, specific business requirements, and endpoint performance. However, challenges were identified in security, resilience, and middleware integration. Based on these findings, we propose a comprehensive set of best practices addressing these critical aspects, including adaptability and data exchange. This proposal seeks to provide a reference framework for potential implementation in key sectors, helping organizations optimize their processes and leverage the benefits of this innovation more effectively. The study contributes to the growing body of knowledge on edge computing applications across diverse industries.

Downloads

Download data is not yet available.

References

Abbasi, R., Martinez, P., & Ahmad, R. (2022). The digitization of agricultural industry – a systematic literature review on agriculture 4.0. Smart Agricultural Technology, 2, 100042. https://doi.org/10.1016/j.atech.2022.100042

Abreha, H. G., Hayajneh, M., & Serhani, M. A. (2022). Federated Learning in Edge Computing: A Systematic Survey. Sensors, 22(2), 450. https://doi.org/10.3390/s22020450

Aguilera, C. A., Figueroa-Flores, C., Aguilera, C., & Navarrete, C. (2023). Comprehensive Analysis of Model Errors in Blueberry Detection and Maturity Classification: Identifying Limitations and Proposing Future Improvements in Agricultural Monitoring. Agriculture, 14(1), 18. https://doi.org/10.3390/agriculture14010018

Alam, M. U., & Rahmani, R. (2023). FedSepsis: A Federated Multi-Modal Deep Learning-Based Internet of Medical Things Application for Early Detection of Sepsis from Electronic Health Records Using Raspberry Pi and Jetson Nano Devices. Sensors, 23(2), 970. https://doi.org/10.3390/s23020970

Ali, A., Ali, H., Saeed, A., Ahmed Khan, A., Tin, T. T., Assam, M., Ghadi, Y. Y., & Mohamed, H. G. (2023). Blockchain-Powered Healthcare Systems: Enhancing Scalability and Security with Hybrid Deep Learning. Sensors, 23(18), 7740. https://doi.org/10.3390/s23187740

Alwakeel, A. M. (2021). An Overview of Fog Computing and Edge Computing Security and Privacy Issues. Sensors, 21(24), 8226. https://doi.org/10.3390/s21248226

Alzu’bi, A., Alomar, A., Alkhaza’leh, S., Abuarqoub, A., & Hammoudeh, M. (2024). A Review of Privacy and Security of Edge Computing in Smart Healthcare Systems: Issues, Challenges, and Research Directions. Tsinghua Science and Technology, 29(4), 1152–1180. https://doi.org/10.26599/TST.2023.9010080

Alzuhair, A., & Alghaihab, A. (2023). The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications. Sensors, 23(14), 6262. https://doi.org/10.3390/s23146262

Armijo, A., & Zamora-Sánchez, D. (2024). Integration of Railway Bridge Structural Health Monitoring into the Internet of Things with a Digital Twin: A Case Study. Sensors, 24(7), 2115. https://doi.org/10.3390/s24072115

Assunção, E., Gaspar, P. D., Alibabaei, K., Simões, M. P., Proença, H., Soares, V. N. G. J., & Caldeira, J. M. L. P. (2022). Real-Time Image Detection for Edge Devices: A Peach Fruit Detection Application. Future Internet, 14(11), 323. https://doi.org/10.3390/fi14110323

Awad, A. I., Fouda, M. M., Khashaba, M. M., Mohamed, E. R., & Hosny, K. M. (2023). Utilization of mobile edge computing on the Internet of Medical Things: A survey. ICT Express, 9(3), 473–485. https://doi.org/10.1016/j.icte.2022.05.006

Bai, T., Pan, C., Deng, Y., Elkashlan, M., Nallanathan, A., & Hanzo, L. (2020). Latency Minimization for Intelligent Reflecting Surface Aided Mobile Edge Computing. IEEE Journal on Selected Areas in Communications, 38(11), 2666–2682. https://doi.org/10.1109/JSAC.2020.3007035

Baktayan, A. A., Thabit Zahary, A., & Ahmed Al-Baltah, I. (2024). A Systematic Mapping Study of UAV-Enabled Mobile Edge Computing for Task Offloading. IEEE Access, 12, 101936–101970. https://doi.org/10.1109/ACCESS.2024.3431922

Bavaresco, R., Silveira, D., Reis, E., Barbosa, J., Righi, R., Costa, C., Antunes, R., Gomes, M., Gatti, C., Vanzin, M., Junior, S. C., Silva, E., & Moreira, C. (2020). Conversational agents in business: A systematic literature review and future research directions. Computer Science Review, 36, 100239. https://doi.org/10.1016/j.cosrev.2020.100239

Bommu, S., M, A. K., Babburu, K., N, S., Thalluri, L. N., G, V. G., Gopalan, A., Mallapati, P. K., Guha, K., Mohammad, H. R., & S, S. K. (2023). Smart City IoT System Network Level Routing Analysis and Blockchain Security Based Implementation. Journal of Electrical Engineering & Technology, 18(2), 1351–1368. https://doi.org/10.1007/s42835-022-01239-4

Bua, C., Adami, D., & Giordano, S. (2024). GymHydro: An Innovative Modular Small-Scale Smart Agriculture System for Hydroponic Greenhouses. Electronics, 13(7), 1366. https://doi.org/10.3390/electronics13071366

Cárdenas Villavicencio, O. E., Zea Ordoñez, M. P., Honores Tapia, J. A., & Lamar Peña, F. S. (2024). Visiones del Futuro Urbano: El Paradigma Teórico de las Smart Cities. Informática y Sistemas: Revista de Tecnologías de la Informática y las Comunicaciones, 8(1). https://doi.org/10.33936/isrtic.v8i1.6324

Chahed, H., Usman, M., Chatterjee, A., Bayram, F., Chaudhary, R., Brunstrom, A., Taheri, J., Ahmed, B. S., & Kassler, A. (2023). AIDA—A holistic AI-driven networking and processing framework for industrial IoT applications. Internet of Things, 22, 100805. https://doi.org/10.1016/j.iot.2023.100805

Chen, S., Li, Q., Zhou, M., & Abusorrah, A. (2021). Recent Advances in Collaborative Scheduling of Computing Tasks in an Edge Computing Paradigm. Sensors, 21(3), 779. https://doi.org/10.3390/s21030779

Chui, K. T., Gupta, B. B., Liu, J., Arya, V., Nedjah, N., Almomani, A., & Chaurasia, P. (2023). A Survey of Internet of Things and Cyber-Physical Systems: Standards, Algorithms, Applications, Security, Challenges, and Future Directions. Information, 14(7), 388. https://doi.org/10.3390/info14070388

D. N, S., B, A., Hegde, S., Abhijit, C. S., & Ambesange, S. (2024). FedCure: A Heterogeneity-Aware Personalized Federated Learning Framework for Intelligent Healthcare Applications in IoMT Environments. IEEE Access, 12, 15867–15883. https://doi.org/10.1109/ACCESS.2024.3357514

Du, Y., Wang, Z., & Leung, V. C. M. (2021). Blockchain-Enabled Edge Intelligence for IoT: Background, Emerging Trends and Open Issues. Future Internet, 13(2), 48. https://doi.org/10.3390/fi13020048

Elbagoury, B. M., Vladareanu, L., Vlădăreanu, V., Salem, A. B., Travediu, A.-M., & Roushdy, M. I. (2023). A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform. Sensors, 23(7), 3500. https://doi.org/10.3390/s23073500

Emmi, L., Fernández, R., Gonzalez-de-Santos, P., Francia, M., Golfarelli, M., Vitali, G., Sandmann, H., Hustedt, M., & Wollweber, M. (2023). Exploiting the Internet Resources for Autonomous Robots in Agriculture. Agriculture, 13(5), 1005. https://doi.org/10.3390/agriculture13051005

Estrada-López, J. J., Vázquez-Castillo, J., Castillo-Atoche, A., Osorio-de-la-Rosa, E., Heredia-Lozano, J., & Castillo-Atoche, A. (2023). A Sustainable Forage-Grass-Power Fuel Cell Solution for Edge-Computing Wireless Sensing Processing in Agriculture 4.0 Applications. Energies, 16(7), 2943. https://doi.org/10.3390/en16072943

Famá, F., Faria, J. N., & Portugal, D. (2022). An IoT-based interoperable architecture for wireless biomonitoring of patients with sensor patches. Internet of Things, 19, 100547. https://doi.org/10.1016/j.iot.2022.100547

Fernández, E. I., Jara Valera, A. J., & Fernández Breis, J. T. (2024). Embedded machine learning of IoT streams to promote early detection of unsafe environments. Internet of Things, 25, 101128. https://doi.org/10.1016/j.iot.2024.101128

Gehlot, A., Malik, P. K., Singh, R., Akram, S. V., & Alsuwian, T. (2022). Dairy 4.0: Intelligent Communication Ecosystem for the Cattle Animal Welfare with Blockchain and IoT Enabled Technologies. Applied Sciences, 12(14), 7316. https://doi.org/10.3390/app12147316

Hyysalo, J., Dasanayake, S., Hannu, J., Schuss, C., Rajanen, M., Leppänen, T., Doermann, D., & Sauvola, J. (2022). Smart mask – Wearable IoT solution for improved protection and personal health. Internet of Things, 18, 100511. https://doi.org/10.1016/j.iot.2022.100511

Ijaz, M., Li, G., Lin, L., Cheikhrouhou, O., Hamam, H., & Noor, A. (2021). Integration and Applications of Fog Computing and Cloud Computing Based on the Internet of Things for Provision of Healthcare Services at Home. Electronics, 10(9), 1077. https://doi.org/10.3390/electronics10091077

ISO/IEC. (2020). Internet of Things (IoT) standards. https://www.iso.org/obp/ui/

Kalyani, Y., Vorster, L., Whetton, R., & Collier, R. (2024). Application Scenarios of Digital Twins for Smart Crop Farming through Cloud–Fog–Edge Infrastructure. Future Internet, 16(3), 100. https://doi.org/10.3390/fi16030100

Kim, J., Lee, J., & Kim, T. (2021). AdaMM: Adaptive Object Movement and Motion Tracking in Hierarchical Edge Computing System. Sensors, 21(12), 4089. https://doi.org/10.3390/s21124089

Kolosov, D., Kelefouras, V., Kourtessis, P., & Mporas, I. (2023). Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware. Sensors, 23(9), 4550. https://doi.org/10.3390/s23094550

Koubaa, A., Ammar, A., Abdelkader, M., Alhabashi, Y., & Ghouti, L. (2023). AERO: AI-Enabled Remote Sensing Observation with Onboard Edge Computing in UAVs. Remote Sensing, 15(7), 1873. https://doi.org/10.3390/rs15071873

Lamar Peña, F. S., Vega Mite, G. A., Honores Tapia, J. A., & Cárdenas Villavicencio, O. E. (2024). Validación y emisión de certificados en Educación Superior utilizando tecnología Blockchain. Informática y Sistemas: Revista de Tecnologías de la Informática y las Comunicaciones, 8(1), 36. https://doi.org/10.33936/isrtic.v8i1.6535

Lambropoulos, G., Mitropoulos, S., Douligeris, C., & Maglaras, L. (2024). Implementing Virtualization on Single-Board Computers: A Case Study on Edge Computing. Computers, 13(2), 54. https://doi.org/10.3390/computers13020054

Liu, L., Qiao, X., Liang, W., Oboamah, J., Wang, J., Rudnick, D. R., Yang, H., Katimbo, A., & Shi, Y. (2023). An Edge-computing flow meter reading recognition algorithm optimized for agricultural IoT network. Smart Agricultural Technology, 5, 100236. https://doi.org/10.1016/j.atech.2023.100236

Loukatos, D., Lygkoura, K.-A., Maraveas, C., & Arvanitis, K. G. (2022). Enriching IoT Modules with Edge AI Functionality to Detect Water Misuse Events in a Decentralized Manner. Sensors, 22(13), 4874. https://doi.org/10.3390/s22134874

Najeh, H., Lohr, C., & Leduc, B. (2024). Real-Time Human Activity Recognition on Embedded Equipment: A Comparative Study. Applied Sciences, 14(6), 2377. https://doi.org/10.3390/app14062377

Nguyen, H. H., Shin, D.-Y., Jung, W.-S., Kim, T.-Y., & Lee, D.-H. (2024). An Integrated IoT Sensor-Camera System toward Leveraging Edge Computing for Smart Greenhouse Mushroom Cultivation. Agriculture, 14(3), 489. https://doi.org/10.3390/agriculture14030489

Oluwole Temidayo Modupe, Aanuoluwapo Ayodeji Otitoola, Oluwatayo Jacob Oladapo, Oluwatosin Oluwatimileyin Abiona, Oyekunle Claudius Oyeniran, Adebunmi Okechukwu Adewusi, Abiola Moshood Komolafe, & Amaka Obijuru. (2024). REVIEWING THE TRANSFORMATIONAL IMPACT OF EDGE COMPUTING ON REAL-TIME DATA PROCESSING AND ANALYTICS. Computer Science & IT Research Journal, 5(3), 693–702. https://doi.org/10.51594/csitrj.v5i3.929

Patrikar, D. R., & Parate, M. R. (2022). Anomaly detection using edge computing in video surveillance system: Review. International Journal of Multimedia Information Retrieval, 11(2), 85–110. https://doi.org/10.1007/s13735-022-00227-8

Puig, F., Rodríguez Díaz, J. A., & Soriano, M. A. (2022). Development of a Low-Cost Open-Source Platform for Smart Irrigation Systems. Agronomy, 12(12), 2909. https://doi.org/10.3390/agronomy12122909

Qi, C., Chang, J., Zhang, J., Zuo, Y., Ben, Z., & Chen, K. (2022). Medicinal Chrysanthemum Detection under Complex Environments Using the MC-LCNN Model. Plants, 11(7), 838. https://doi.org/10.3390/plants11070838

Rastegari, H., Nadi, F., Lam, S. S., Ikhwanuddin, M., Kasan, N. A., Rahmat, R. F., & Mahari, W. A. W. (2023). Internet of Things in aquaculture: A review of the challenges and potential solutions based on current and future trends. Smart Agricultural Technology, 4, 100187. https://doi.org/10.1016/j.atech.2023.100187

Ravindran, A. A. (2023). Internet-of-Things Edge Computing Systems for Streaming Video Analytics: Trails Behind and the Paths Ahead. IoT, 4(4), 486–513. https://doi.org/10.3390/iot4040021

Restrepo-Arias, J. F., Branch-Bedoya, J. W., & Awad, G. (2024). Image classification on smart agriculture platforms: Systematic literature review. Artificial Intelligence in Agriculture, 13, 1–17. https://doi.org/10.1016/j.aiia.2024.06.002

Reyana, A., Kautish, S., Alnowibet, K. A., Zawbaa, H. M., & Wagdy Mohamed, A. (2023). Opportunities of IoT in Fog Computing for High Fault Tolerance and Sustainable Energy Optimization. Sustainability, 15(11), 8702. https://doi.org/10.3390/su15118702

Rivadeneira, J. E., Borges, G. A., Rodrigues, A., Boavida, F., & Sá Silva, J. (2024). A unified privacy preserving model with AI at the edge for Human-in-the-Loop Cyber-Physical Systems. Internet of Things, 25, 101034. https://doi.org/10.1016/j.iot.2023.101034

Rudrakar, S., & Rughani, P. (2023). IoT based Agriculture (Ag-IoT): A detailed study on Architecture, Security and Forensics. Information Processing in Agriculture, S2214317323000665. https://doi.org/10.1016/j.inpa.2023.09.002

Sanguino Reyes, M. R. (2020). A systematic review of the literature on information technology outsourcing services. Journal of Physics: Conference Series, 1513(1), 012007. https://doi.org/10.1088/1742-6596/1513/1/012007

Shukla, S., Thakur, S., Hussain, S., Breslin, J. G., & Jameel, S. M. (2021). Identification and Authentication in Healthcare Internet-of-Things Using Integrated Fog Computing Based Blockchain Model. Internet of Things, 15, 100422. https://doi.org/10.1016/j.iot.2021.100422

Singh, P., Elmi, Z., Krishna Meriga, V., Pasha, J., & Dulebenets, M. A. (2022). Internet of Things for sustainable railway transportation: Past, present, and future. Cleaner Logistics and Supply Chain, 4, 100065. https://doi.org/10.1016/j.clscn.2022.100065

Tripathy, S. S., Rath, M., Tripathy, N., Roy, D. S., Francis, J. S. A., & Bebortta, S. (2023). An Intelligent Health Care System in Fog Platform with Optimized Performance. Sustainability, 15(3), 1862. https://doi.org/10.3390/su15031862

Wu, Y., Dai, H.-N., & Wang, H. (2021). Convergence of Blockchain and Edge Computing for Secure and Scalable IIoT Critical Infrastructures in Industry 4.0. IEEE Internet of Things Journal, 8(4), 2300–2317. https://doi.org/10.1109/JIOT.2020.3025916

Xavier, R., Silva, R. S., Ribeiro, M., Moreira, W., Freitas, L., & Oliveira-Jr, A. (2024). Integrating Multi-Access Edge Computing (MEC) into Open 5G Core. Telecom, 5(2), 433–450. https://doi.org/10.3390/telecom5020022

Yang, S., Zhang, Z., Xia, H., Li, Y., & Liu, Z. (2023). Edge Intelligence-Assisted Asymmetrical Network Control and Video Decoding in the Industrial IoT with Speculative Parallelization. Symmetry, 15(8), 1516. https://doi.org/10.3390/sym15081516

Zhang, T., Li, Y., & Philip Chen, C. L. (2021). Edge computing and its role in Industrial Internet: Methodologies, applications, and future directions. Information Sciences, 557, 34–65. https://doi.org/10.1016/j.ins.2020.12.021

Zheng, W., Wang, X., Xie, Z., Li, Y., Ye, X., Wang, J., & Xiong, X. (2024). Data management method for building internet of things based on blockchain sharding and DAG. Internet of Things and Cyber-Physical Systems, 4, 217–234. https://doi.org/10.1016/j.iotcps.2024.01.001

Published

2024-09-30

How to Cite

[1]
Asanza Honores, A.I., Chuchuca Vacacela , D.G., Zea Ordoñez, M.P. and Contreras Alonso, T.Y. 2024. Best Practices in the Implementation of Edge Computing: A Case Study Approach . Informática y Sistemas. 8, 2 (Sep. 2024), 70–85. DOI:https://doi.org/10.33936/isrtic.v8i2.6879.

Issue

Section

Regular Papers

Most read articles by the same author(s)