Influence of the rearing system on phagocytic indexes and weight gain of the silver catfish (Rhamdia quelen, Quoy & Gaimard, 1824)
DOI:
https://doi.org/10.33936/at.v5i1.5268Palabras clave:
Phagocytic indexes, Aquaponic, Heterotrophic, Watercress, Rhamdia quelen, Índices fagocíticos, Acuaponia, Biofloc, BerroResumen
Fish consumption has been growing since 1961. Indeed, the fisheries sector is essential to prevent hunger and malnutrition. However, this sector has its challenges. Fish stocks are being depleted beyond biological sustainability, with diseases and biosecurity risks to production and harm to the environment and ecosystems. There is a clear need to improve fish farming with minimum occupation and environmental impact. Heterotrophic and aquaponics systems are being utilized and modified to address these needs. However, environmental factors can affect the innate immunity of fish raised in these systems. Understanding how these systems affect fish’s immunity is critical to prevent potential hazards and the breakdown of these production methods. The goal of this research was to evaluate the performance, growth, and phagocytic indexes of silver catfish (Rhamdia quelen) juveniles reared in water recirculation, biofloc, and aquaponics systems in consortium with watercress seedlings (Nasturtium officinale). In each system, 12 juveniles weighing 15.2 g±7,6 were randomly divided into three replicates, fed with commercial feed. The following physical-chemical parameters - temperature, total and toxic ammonia, nitrite, and water pH - were daily assessed. Fishes were weighed monthly for six months. It was observed that R. quelen juveniles reared in the aquaponic system achieved higher average weight, but no statistical significance was detected (p>0.05) when compared to those reared in the recirculated and biofloc systems. At the end of the experiment, the phagocytic index was lower only in the recirculating system. The phagocytic capacity was lower in all systems. Although the aquaponic system presented low average weight gain/animal the performance of this system was effective in reducing the concentrations of total ammonia and nitrite in the water, in consortium with the production of vegetables.
Descargas
Citas
Afonso A., Ellis A, E., Silva M. T. (1997). The Leucocyte Population of the Unstimulated Peritoneal Cavity of Rainbow Trout (Oncorhynchus mykiss). Fish and Shellfish Immunology, 7 (5): 335–348.
Araújo A. F. (2015). Integração de plantas com espécies nativas de peixes em sistema de aquaponia. Master dissertation. Universidade Federal de Santa Catarina, Florianópolis, Brazil.
Avnimelech Y. (2011). BIO-FLOCS TECHNOLOGY: Basics and New Developments. World Aquaculture. Natal, Brazil (june 2011). https://www.was.org/WASMeetings/meetings/SessionAbstracts.aspx?Code= WA2011&Session=39.
Baßmann B., Brenner M., Palm HW. (2017). Stress and welfare of African catfish (Clarias gariepinus Burchell, 1822) in a coupled aquaponic system. Water, 9: 504.
Baßmann B., Harbach H., Weißbach S., Palm HW. (2020). Effect of plant density in coupled aquaponics on the welfare status of African catfish, Clarias gariepinus. Journal of the World Aquaculture Society, 51:183-199.
Baldisserotto B., Radünz Neto J. (2004). Criação de Jundiá. Editora UFSM. Santa Maria, Brazil.
Blidariu F., Grozea A. (2011). Increasing the Economical Efficiency and Sustainability of Indoor Fish Farming by Means of Aquaponics - Review. Animal Science and Biotechnologies, 44:1–8.
Braun N, De Lima RL, Moraes B., Loro VL, Baldisserotto B. (2006). Survival, growth and biochemical parameters of silver catfish, Rhamdia quelen (Quoy & Gaimard, 1824), juveniles exposed to different dissolved oxygen levels. Aquaculture Research, 37:1524-1531.
Browdy, C.L., D. Bratvold, A.D. Stokes, and R.P McIntosh. (2001). Perspectives on the Application of Closed Shrimp Culture Systems.World Aquaculture Society, Baton Rouge, Louisiana, USA, edited by C.L. Browdy and D.E. Jory, 20–30
Calone, R., Pennisi, G.; Morgenstern, R; Sanyé-Mengual, E.; Lorleberg, W.; Dapprich, P.; Winkler, P.; Orsini, F.; Gianquinto, G. (2019). Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics. Science of the Total Environment, 687:759-767.
Chippari-Gomes A.R, Gomes L.C, Baldisserotto B. (2000). Lethal temperatures for Rhamdia quelen larvae (Pimelodidae). Ciência Rural, 30(6):1069-1071.
Copatti, C.E.; García, L.O.; Cunha, M.A., Baldisserotto, B., Kochhann, D. (2011). Interaction of water hardness and pH on growth of silver catfish, Rhamdia quelen, juveniles. Journal of the World Aquaculture Society, 42:580-585.
Cunha da Silva J. R. M., Cooper E. L., Sinhorini I. L., Borges J. C. S., Jensch-Junior B. E., Porto-Neto L. R., Hernandez-Blazquez F. J., Vellutini B. C., Pressinotti L. N., Costa-Pinto F. A. (2005). Microscopical Study of Experimental Wound Healing in Notothenia Coriiceps (Cabeçuda) at 0 Degrees C. Cell and Tissue Research 321 (3): 401–410.
Da Rocha A., Biazzetti Filho M., Stech M., Paz da Silva R. (2017). Lettuce production in aquaponic and biofioc systems with silver catfish Rhamdia quelen. Boletim do Instituto de Pesca, 43:64-73.
FAO. (2006). FAO Fisheries Circular No. 1018.Use of fishery resources as feed inputs to aquaculture development: trends and policy implications. Water Resources, 1018:1-114.
FAO (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome.
Gomes L. D. C., Golombieski J.I., Chippari-Gomes A.R, Baldisserotto, B. (2000). Biologia do jundiá Rhamdia quelen (Teleostei, Pimelodidae). Ciência Rural, 30:179-185.
Graber A., Junge R. (2009). Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desalination, 246:147–156.
IGFA. International Game Fish Association. (2001). Database of IGFA angling records until 2001. IGFA, Fort Lauderdale, USA.
Knaus U., Wenzel L. C., Appelbaum S., Palm H. W. (2020). Aquaponics (sl) Production of Spearmint (Mentha spicata) with African Catfish (Clarias gariepinus) in Northern Germany. Sustainability, 12: 8717.
Lima R. L. D., Braun N., Kochhann D., Lazzari, R. Radünz-Neto, J., Moraes, B. S., Loro, V.L., Baldisserotto, B. (2011). Survival, growth and metabolic parameters of silver catfish, Rhamdia quelen, juveniles exposed to different waterborne nitrite levels. Neotropical Ichthyology. 9:147-152.
Mansour, A. T., Esteban M. Á.. (2017). Effects of Carbon Sources and Plant Protein Levels in a Biofloc System on Growth Performance, and the Immune and Antioxidant Status of Nile Tilapia (Oreochromis Niloticus). Fish and Shellfish Immunology, 64: 202–209.
Miron D.D.S., Moraes B, Becker A.G., Crestani, M., Spanevello, R., Loro, V.L., Baldisserotto, B. (2008). Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture. 277:192-196.
Naylor, R. L., Goldburg R. J., Primavera J. H., Kautsky N., Beveridge M. C., Clay J., Folke C., Lubchenco J., Mooney H., Troell M. (2000). Effect of Aquaculture on World Fish Supplies. Nature, 405 (6790): 1017–1024.
Oladimeji S.A., et al. (2020). Aquaponics production of catfish and pumpkin: Comparison with conventional production systems. Food Science & Nutrition, 8: 2307-2315.
Osman A.G.M, Farrag M.M.S., Badrey A.E.A., Khedr Z.M.A., Kloas W. (2021). Water quality and health status of the monosex Nile Tilapia, Oreochromis niloticus cultured in aquaponics system (ASTAF-PRO). Egyptian Journal of Aquatic Biology & Fisheries, 25(2): 785-802.
Pasch J., Ratajczak B., Appelbaum S., Palm H.W., Knaus U. (2021). Growth of Basil (Ocimum basilicum) in DRF, Raft, and Grow Pipes with Effluents of African Catfish (Clarias gariepinus) in Decoupled Aquaponics. AgriEngineering, 3:92-109.
Piedras S.R.N, Moraes P.R.R, Pouey J.L.O.F. (2004). Crescimento de juvenis de jundiá (Rhamdia quelen) de acordo com a temperatura da água. Boletim do Instituto de Pesca, 30:177- 182.
Poppola O.M., Oguntade S.T., Adebayo O.T. (2021). Growth performance and immunological response of African Catfish (Clarias gariepinus) juveniles reared in biofloc system. Journal of Agriculture and Rural Development in Tropics and Subtropics, 122(1): 137-145
Reverter M., Bontemps N., Lecchini D., Banaigs B., Sasal P.. (2014). Use of Plant Extracts in Fish Aquaculture as an Alternative to Chemotherapy: Current Status and Future Perspectives. Aquaculture, 433: 50–61.
Rosenfeld G. (1947). Método rápido de coloração de esfregaços de sangue. Noções práticas sobre corantes pancrônicos e estudos de diversos fatores. Memórias de Instituto Butantã, 20:315-328.
Santos, M.a J. P. L. Dos. (2016). Smart Cities and Urban Areas — Aquaponics as Innovative Urban Agriculture. Urban Forestry & Urban Greening, 20: 402–406.
Schryver P., Crab, R., Defoirdt, T., Boon, N., Verstraete, W. (2008). The basics of bio-flocs technology: The added value for aquaculture. Microbial Ecology, 277:125–137.
Zaniboni Filho E., Meurer S., Shibata O.A., de Oliveira Nuñer A.P. (2004). Catálogo ilustrado de peixes do alto Rio Uruguai. Florianópolis: Editora da UFSC. 128 p.
Publicado
Número
Sección
Licencia
Derechos de autor 2023 Renata Stecca Iunes, André Luiz Veiga Conrado, Isabella Cristina Bordon, Matheus Santos Costa, José Roberto Machado Cunha da Silva

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.


